The purpose of this study was to compare the cardiorespiratory responses of young women to exercise at the first ventilatory threshold (VT1), the second ventilatory threshold (VT2), and at maximum effort (MAX) between maximal incremental tests performed using water aerobic exercises and a treadmill on land (TL). Twenty women (24.0 ± 2.5 years; 163.3 ± 6.7 cm; 60.0 ± 6.7 kg) underwent 4 maximal tests in randomized order, with a 48-hour interval between tests. Three tests involved performing water aerobic exercises (stationary running, frontal kick, and cross-country skiing) and 1 TL. Oxygen uptake (VO2), ventilation (VE), and heart rate were measured throughout the tests, and their values at the VT1, VT2, and MAX intensities were determined by 3 independent, experienced physiologists. Repeated measures analysis of variance with Bonferroni post hoc tests were used for comparisons between tests (α = 0.05). Heart rate was significantly higher in the TL condition compared with the water aerobic exercises at the VT1 (p = 0.001), VT2 (p < 0.001), and MAX (p < 0.001) intensities. VO2 and VE had similar values across the 4 protocols at the VT1 intensity, but significantly higher values were observed with TL (VO2: p < 0.001; VE: p < 0.001) at the VT2 intensity. At the MAX intensity, VO2 was significantly higher with TL compared with the 3 water aerobic exercises (p < 0.001), whereas no significant differences in VE between the 4 protocols were found. These results suggest that the prescription of water aerobics classes should be based on specific maximal tests for water aerobic exercises. Training intensities could be overestimated if they were based on maximal tests on dry land.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1519/JSC.0000000000000304 | DOI Listing |
Antonie Van Leeuwenhoek
January 2025
Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan.
A novel aerobic marine bacterium, FRT2, isolated from surface water of a fishing port in Fukui, Japan, was characterised based on phylogenomic and phylogenetic analyses combined with classical phenotypic and chemotaxonomic characterisations. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FRT2 clustered with genus Leeuwenhoekiella. Closest relatives of FRT2 were Leeuwenhoekiella palythoae KMM 6264 and Leeuwenhoekiella nanhaiensis G18 with 16S rRNA gene sequence identities of 95.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Food Science and Nutrition Department, School of Food Engineering, University of Campinas (UNICAMP), 80, Monteiro Lobato, Campinas, SP 13083-862 Brazil.
The aim of this study was to assess the gamma-aminobutyric acid (GABA) production in plant-based fermented beverages with kefir cultures (milk and water kefir). Water-soluble extracts of peanut and Brazil nut were evaluated as non-dairy substrates for the development of new bioactive beverages. A total of 12 formulations were developed and evaluated for their chemical composition, physical chemical characterization, and microbiological counts (aerobic mesophilic bacteria, lactobacilli, lactococci and yeasts).
View Article and Find Full Text PDFWater Res X
May 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (NO) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFFood Chem X
January 2025
Istanbul Aydin University, Engineering Faculty, Food Engineering Department, 34295 Istanbul, Türkiye.
This study investigated the properties of films based on avocado () seed starch. A full factorial experimental design was performed using different amounts of starch (3-5 %) and glycerol (0.75-1.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
The oxomolybdenum complexes Mo1, Mo2 and Mo3, which share a common ONO donor ligand backbone but differ in their peripheral substituents, were explored to study their reactivity in organic transformations in water. The ligand backbones of Mo1 and Mo2 were covalently linked to a methyl group and a single hydrophobic -hexadecyl chain an ether linkage, respectively. The complex Mo3 was found to possess two -hexadecyl chains attached to the ligand backbone a common amine-N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!