In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12-14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871132PMC
http://dx.doi.org/10.3390/s131114662DOI Listing

Publication Analysis

Top Keywords

lidar sensor
16
crop weeds
8
weeds soil
8
soil surface
8
terrestrial lidar
8
reflection measurements
8
carried maize
8
maize field
8
lidar
7
sensor
6

Similar Publications

The outstanding performance of superconducting nanowire single-photon detectors (SNSPDs) has expanded their application areas from quantum technologies to astronomy, space communication, imaging, and LiDAR. As a result, there has been a surge in demand for these devices, that commercial products cannot readily meet. Consequently, more research and development efforts are being directed towards establishing in-house SNSPD manufacturing, leveraging existing nano-fabrication capabilities that can be customized and fine-tuned for specific needs.

View Article and Find Full Text PDF

In this paper, we face the point-cloud segmentation problem for spinning laser sensors from a deep-learning (DL) perspective. Since the sensors natively provide their measurements in a 2D grid, we directly use state-of-the-art models designed for visual information for the segmentation task and then exploit the range information to ensure 3D accuracy. This allows us to effectively address the main challenges of applying DL techniques to point clouds, i.

View Article and Find Full Text PDF

Biomechanical analysis is increasingly being undertaken in field-based settings, often using inertial sensors or video-based pose estimation. These advancements necessitate more practical and accessible scaling methods as alternatives to traditional laboratory-based techniques like optical marker-based scaling. LiDAR scanning is a technique that could provide a reliable and efficient means of scaling biomechanical models.

View Article and Find Full Text PDF

Accurate classification of three-dimensional (3D) point clouds in real-world environments is often impeded by sensor noise, occlusions, and incomplete data. To overcome these challenges, we propose SMCNet, a robust multimodal framework for 3D point cloud classification. SMCNet combines multi-view projection and neural radiance fields (NeRFs) to generate high-fidelity 2D representations with enhanced texture realism, addressing occlusions and lighting inconsistencies effectively.

View Article and Find Full Text PDF

Object detection is an essential computer vision task that identifies and locates objects within images or videos and is crucial for applications such as autonomous driving, robotics, and augmented reality. Light Detection and Ranging (LiDAR) and camera sensors are widely used for reliable object detection. These sensors produce heterogeneous data due to differences in data format, spatial resolution, and environmental responsiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!