Reaction of Co(NCS)2 with 4-ethylpyridine leads to the formation of three new compounds of composition Co(NCS)2(4-ethylpyridine)4 (1), [(Co(NCS)2]2(4-ethylpyridine)6 (2), and [Co(NCS)2(4-ethylpyridine)2]n (3). In all compounds the coordination of the Co(II) ions is distorted octahedral. 1 consists of discrete monomeric complexes and in 2 two Co(II) cations are linked by pairs of μ-1,3-bridging thiocyanato ligands into dimers. In the crystal structure of 3 the Co(II) cations are connected into chains by the same bridge as in 2. Magnetic studies show that 1 and 2 are paramagnets down to a temperature of 2 K, while compound 3, which is the main object of this study, is an antiferromagnet with the Néel temperature T(N) = 3.4 K. Its magnetic structure is built from ferromagnetic chains, which are weakly antiferromagnetically coupled. With increasing magnetic field a metamagnetic transition starts at ~175 Oe, as observed for a polycrystalline sample. Magnetic relaxations, which were observed in the antiferromagnetic state, are retained at the metamagnetic transition. With decreasing field 3 remains in a state, in which except of the faster magnetic relaxation process in single chains also a slower process coexists resulting in the appearance of a magnetic hysteresis loop.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic4012235 | DOI Listing |
Inorg Chem
December 2024
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou,Fujian 350002, China.
PbOCu(SeO)(NO)(OH) was synthesized by means of a replacement of (OH) groups for F ions of PbOCu(SeO)(NO)F, showing a transformation of kagomé and breathing kagomé lattices. Such a replacement did not change their intralayer ferromagnetic interactions and interlayer antiferromagnetic (AFM) interactions but slightly affected the Néel temperature and critical field, where PbOCu(SeO)(NO)(OH) possesses an AFM ordering at = 29.3 K, and a field-induced metamagnetic transition can occur at 2 K while a critical magnetic field of 1.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
In the present work, nanocrystalline samples of compositionsNixFe1-xCo2O4(x= 0.0, 0.25, 0.
View Article and Find Full Text PDFPhys Rev E
October 2024
PoreLab, NJORD Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway and Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA.
We perform a numerical study of the kinetic Blume-Capel (BC) model to find if it exhibits the metamagnetic anomalies previously observed in the kinetic Ising model for supercritical periods [P. Riego et al., Phys.
View Article and Find Full Text PDFPhys Rev E
September 2024
School of Science, Shenyang University of Technology, Shenyang 110870, China.
In this paper, we propose to solve the issues of long-range or next-neighbor interactions by introducing randomness. This approach is applied to the square lattice Ising model. The Monte Carlo method with the Metropolis algorithm is utilized to calculate the critical temperature T_{C}^{*} under equilibrium thermodynamic phase transition conditions and to investigate the characterization of randomness in terms of magnetization.
View Article and Find Full Text PDFNanoscale
November 2024
SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 16419, Korea.
The transition between the ferromagnetic (FM) and anti-ferromagnetic (AFM) phases in van der Waals (vdW) magnets has been extensively studied since the discovery of vdW magnets, due to the importance of both transitions within a single material. Recently, among vdW magnets, FeGaTe (FGaT) has garnered significant attention for its robust FM properties that remain stable above room temperature. Also, the FM to AFM phase transition in this material has been achieved through substitutional Co-atom doping at Fe sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!