Ultraviolet (254 nm) irradiation of the bacteriophage MS2 results in the decrease of the number of antigenic determinants exposed on the virion surface. The cross-section of the decrease, as measured by the number of anti-MS2 IgG molecules bound per virion, is 10(-16) mm2 per photon. The decrease of the phage-antibody binding proceeds after irradiation with a rate constant of about 5 x 10(-3) min-1. Since the antigenic determinants of the phage MS2 coat protein does not contain photoreactive amino acid residues, the irradiation-induced decrease of the phage antibody binding is determined, most probably, by the shielding of the antigenic determinants. Such shielding could be caused by rearrangement of coat protein molecules and/or of the capsid induced by photomodification of non-antigenic fragments of coat protein and/or of intraphage RNA.

Download full-text PDF

Source

Publication Analysis

Top Keywords

antigenic determinants
12
coat protein
12
phage ms2
8
[principles selective
4
selective inactivation
4
inactivation virus
4
virus genome
4
genome uv-irradiation
4
uv-irradiation phage
4
ms2 binding
4

Similar Publications

Leishmaniasis is a chronic inflammatory zoonotic illness caused by protozoan flagellates belonging to the genus. Current data suggest that over 1 billion people worldwide are susceptible to infection, primarily in tropical and subtropical countries, where up to 2 million new cases are reported annually. Therefore, the development of a vaccine is crucial to combating this disease.

View Article and Find Full Text PDF

Expression, purification and immunogenicity analyses of receptor binding domain protein of severe acute respiratory syndrome coronavirus 2 from delta variant.

Vet Res Forum

December 2024

Institute of Pathogenic Microbiology, College of Biological Science and Engineering, and Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, China.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. The receptor binding domain (RBD), located at the spike protein of SARS-CoV-2, contains most of the neutralizing epitopes during viral infection and is an ideal antigen for vaccine development. In this study, bioinformatic analysis of the amino acid sequence data of SARS-CoV-2 RBD protein for the better understanding of molecular characteristics was performed.

View Article and Find Full Text PDF

Background: The escalating global prevalence of food allergies has intensified the need for hypoallergenic food products. Transglutaminase (TGase)-mediated crosslinking has garnered significant attention for its potential to reduce the allergenicity of food proteins. This study aimed to investigate the effects of TGase crosslinking on the potential allergenicity and conformational changes in a dual-protein system composed of β-lactoglobulin (β-LG) and soy protein isolate (SPI) at varying mass ratios (10:0, 7:3, 5:5, 3:7 and 0:10 (w/w)).

View Article and Find Full Text PDF

Antigenic determinants underlying IgE-mediated anaphylaxis to peanut.

J Allergy Clin Immunol

January 2025

Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN.

Background: Studies of human IgE and its targeted epitopes on allergens have been very limited. We have an established method to immortalize IgE encoding B cells from allergic individuals.

Objective: To develop an unbiased and comprehensive panel of peanut-specific human IgE mAbs to characterize key immunodominant antigenic regions and epitopes on peanut allergens to map the molecular interactions responsible for inducing anaphylaxis.

View Article and Find Full Text PDF

Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues.

Cell Rep Methods

January 2025

Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!