Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion.

Environ Eng Sci

School of Engineering, Brown University, Providence, Rhode Island.

Published: October 2013

Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The "open field" soil gas vapor concentration profile is observed to be sensitive to the soil moisture distribution. The van Genuchten relations can be used for describing the soil moisture retention curve, and give results consistent with the results from a previous experimental study. Other modeling methods that account for soil moisture are evaluated. These modeling results are also compared with the measured subsurface concentration profiles in the U.S. EPA vapor intrusion database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804323PMC
http://dx.doi.org/10.1089/ees.2013.0133DOI Listing

Publication Analysis

Top Keywords

soil moisture
24
vapor concentration
16
soil gas
12
gas vapor
12
vapor intrusion
12
soil
8
concentration profile
8
vapor
7
moisture
6
concentration
5

Similar Publications

Rationale: The analysis of natural abundance isotopes in biogenic NO molecules provides valuable insights into the nature of their precursors and their role in biogeochemical cycles. However, current methodologies (for example, the isotopocule map approach) face limitations, as they only enable the estimation of combined contributions from multiple processes at once rather than discriminating individual sources. This study aimed to overcome this challenge by developing a novel methodology for the partitioning of NO sources in soil, combining natural abundance isotopes and the use of a N tracer (N Gas Flux method) in parallel incubations.

View Article and Find Full Text PDF

Enhancing the water use efficiency model predictions for Platycladus orientalis and Quercus variabilis: Integrating the dynamics of carbon dioxide concentration and soil water availability.

Sci Total Environ

December 2024

Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, Beijing, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China.

Water use efficiency (WUE) is a tracer for plants on the trade-off exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere; therefore, a dynamic investigation of WUE and its driving factors will be of great significance to optimize water and carbon fitness and predict the plants' response to climate change. In our study, a modified water use efficiency model was proposed to improve the quantification of carbon and water processes by adding a photosynthesis-g simulation dependent on CO concentration and soil moisture to the photosynthetic transpiration model (noted as SMPTSB model). Actual measured water use efficiencies were respectively obtained by the gas exchange measurements (WUE) and the δC that defined as the carbon-heavy isotope of the water-soluble compound in leaves (WUE) of three-year tree saplings of Platycladus orientalis (L.

View Article and Find Full Text PDF

Ceratapion basicorne (Illiger) (Coleoptera: Apionidae), a weevil native to Europe and western Asia, shows promise for enhancing the control of yellow starthistle (Centaurea solstitialis L.), an invasive annual forb in the western United States. However, a paucity of data on this biocontrol agent's environmental constraints has made it difficult to assess the suitability of potential release locations.

View Article and Find Full Text PDF

Linking sap flow and tree water deficit in an unmanaged, mixed beech forest during the summer drought 2022.

Plant Biol (Stuttg)

December 2024

Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany.

Temperate mixed forests are currently experiencing severe drought conditions and face increased risk of degradation. However, it remains unclear how critical tree physiological functions such as sap flow density (SFD) and tree water deficit (TWD, defined as reversible stem shrinkage when water is depleted), respond to extreme environmental conditions and how they interact under dry conditions. We monitored SFD and TWD of three co-occurring European tree species (Fagus sylvatica, Fraxinus excelsior and Acer pseudoplatanus) in dry conditions, using high temporal resolution sap flow, dendrometer, and environmental measurements.

View Article and Find Full Text PDF

Optimizing soil remediation with multi-functional L-PH hydrogel: Enhancing water retention and heavy metal stabilization in farmland soil.

Sci Total Environ

December 2024

Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China. Electronic address:

Agricultural soils face severe challenges, including water scarcity and heavy metal contamination. Optimizing soil remediation efficiency while minimizing inputs is essential. This study assessed the water retention and heavy metal adsorption properties of L-PH hydrogel through aqueous experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!