Objective: To compare body composition parameters estimated by air displacement plethysmography (ADP) to dual X-ray absorptiometry (DXA) in body mass index (BMI) classifications that include extremely obese (BMI ≥ 40.0 kg/m(2) ), and to examine if differences between analyses were influenced by BMI.
Methods: Fat-free mass (FFM, kg), fat mass (FM, kg), and body fat (BF, %) were analyzed with both technologies.
Results: All outcome measures of ADP and DXA were highly correlated (r ≥ 0.95, P < 0.001 for FFM, FM, and BF), but Bland-Altman analyses revealed significant bias (P < 0.01 for all). ADP estimated greater FFM and lower FM and BF (P < 0.01 for all). BMI explained 27% of the variance in differences between FFM measurements (P < 0.001), and 37 and 33% of the variances in differences between FM and BF measurements, respectively (P < 0.001 for both). Within normal weight and overweight classifications, ADP estimated greater FFM and lower FM and BF (P < 0.001 for all), but the opposite occurred within the extremely obese classification; ADP estimated lower FFM and greater FM and BF (P < 0.05 for all).
Conclusions: Body composition analyses by the two technologies were strongly congruent, but systematically different and influenced by BMI. Caution should be taken when utilizing ADP to estimate body composition parameters over a wide range of BMI classifications that include extremely obese.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972070 | PMC |
http://dx.doi.org/10.1002/oby.20655 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!