The aim of this clinical study was to report on the efficacy in reduction and safety in PMMA leakage of a novel vertebral augmentation technique with PEEK and PMMA, together with pedicle screws in the treatment of fresh vertebral fractures in young adults. Twenty consecutive young adults aged 45 ± 11 years with fresh burst A3/AO or severely compressed A2/AO fractures underwent via a less invasive posterior approach one-staged reduction with a novel augmentation implant and PMMA plus 3-vertebrae pedicle screw fixation and fusion. Radiologic parameters as segmental kyphosis (SKA), anterior (AVBHr) and posterior vertebral body height ratio (PVBHr), spinal canal encroachment (SCE), cement leakage and functional parameters as VAS, SF-36 were measured pre- and post-operatively. Hybrid construct restored AVBHr (P < 0.000), PVBHr (P = 0.02), SKA (P = 0.015), SCE (P = 0.002) without loss of correction at an average follow-up of 17 months. PMMA leakage occurred in 3 patients (3 vertebrae) either anteriorly to the fractured vertebral body or to the adjacent disc, but in no case to the spinal canal. Two pedicle screws were malpositioned (one medially, one laterally to the pedicle at the fracture level) without neurologic sequelae. Solid posterolateral spinal fusion occurred 8-10 months post-operatively. Pre-operative VAS and SF-36 scores improved post-operatively significantly. This study showed that this novel vertebral augmentation technique using PEEK implant and PMMA reduces and stabilizes via less invasive technique A2 and A3 vertebral fractures without loss of correction and leakage to the spinal canal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00590-013-1339-2 | DOI Listing |
Alzheimers Dement
December 2024
Afe Babalola University, Ado-Ekiti (ABUAD), Ado-Ekiti, Ekiti state, Nigeria.
Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.
View Article and Find Full Text PDFBackground: In the brain as in other organs, complement contributes to immune defence and housekeeping to maintain homeostasis. Sources of complement may include local production by brain cells and influx from the periphery, the latter severely restricted by the blood brain barrier (BBB) in healthy brain. Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury.
View Article and Find Full Text PDFBackground: The increased incidence of Alzheimer's disease (AD) rate represent an unmet medical need and thus critical for the development of novel molecular therapeutics. Recent work focusing on patients with apoE4 alleles has highlighted the association of brain cholesterol dysregulation with elevated pathological burden and neurodegeneration. These studies have highlighted the importance of the nuclear receptor Liver X receptor (LXR) for developing AD therapies.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China.
Pediatric patients of autosomal dominant early onset osteoporosis conferred by heterozygous mutation in the WNT1 (OMIM: 615221) were rarely reported, and therapy in pediatrics is relatively inexperienced. The clinical and genotypic characteristics and treatment process of four children with osteoporosis caused by WNT1 monoallelic variation were analyzed. The patients admitted from June 2023 to January 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!