We investigated if dynamic cerebral pressure-flow relationships in lowlanders are altered at high altitude (HA), differ in HA natives and after return to sea level (SL). Lowlanders were tested at SL (n=16), arrival to 5,050 m, after 2-week acclimatization (with and without end-tidal PO2 normalization), and upon SL return. High-altitude natives (n=16) were tested at 5,050 m. Testing sessions involved resting spontaneous and driven (squat-stand maneuvers at very low (VLF, 0.05 Hz) and low (LF, 0.10 Hz) frequencies) measures to maximize blood pressure (BP) variability and improve assessment of the pressure-flow relationship using transfer function analysis (TFA). Blood flow velocity was assessed in the middle (MCAv) and posterior (PCAv) cerebral arteries. Spontaneous VLF and LF phases were reduced and coherence was elevated with acclimatization to HA (P<0.05), indicating impaired pressure-flow coupling. However, when BP was driven, both the frequency- and time-domain metrics were unaltered and comparable with HA natives. Acute mountain sickness was unrelated to TFA metrics. In conclusion, the driven cerebral pressure-flow relationship (in both frequency and time domains) is unaltered at 5,050 m in lowlanders and HA natives. Our findings indicate that spontaneous changes in TFA metrics do not necessarily reflect physiologically important alterations in the capacity of the brain to regulate BP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915197 | PMC |
http://dx.doi.org/10.1038/jcbfm.2013.178 | DOI Listing |
J Biomech
December 2024
Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, Umeå, Sweden; Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.
J Thorac Dis
October 2024
Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
Background: Reverse triggering (RT) is a ventilatory asynchrony characterized by the activation of respiratory muscles in response to passive mechanical insufflation. Although RT can potentially exacerbate lung injury, its characteristics in patients with acute brain injury remain under-explored. This study aims to elucidate the incidence and factors associated with RT in this patient population.
View Article and Find Full Text PDFExp Physiol
December 2024
Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
IEEE Trans Biomed Eng
September 2024
Objective: Dynamic cerebral autoregulation (dCA) refers to a collection of mechanisms that act to maintain steady state cerebral blood flow (CBF) near constant despite changes in arterial blood pressure (ABP), but which is known to become impaired in various cerebrovascular diseases. Currently, the mechanisms of dCA and how they are affected in different physiological conditions are poorly understood. The objective of this study was to disentangle the magnitudes and time scales of the myogenic and metabolic responses of dCA, in order to investigate how each mechanism is affected in impaired dCA.
View Article and Find Full Text PDFFront Physiol
August 2024
Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!