Identification of a RAPD marker for palmitic-acid concentration in the seed oil of spring turnip rape (Brassica rapa ssp. oleifera).

Theor Appl Genet

Plant Breeding Section, Institute of Crop and Soil Science, Agricultural Research Centre of Finland, FIN-31600, Jokioinen, Finland.

Published: August 1995

F2 progeny (105 individuals) from the cross Jo4002 x Sv3402 were used to identify DNA markers associated with palmitic-acid content in spring turnip rape (Brassica rapa ssp. oleifera). QTL mapping and ANOVA analysis of 140 markers exposed one linkage group with a locus controlling palmitic-acid content (LOD score 27), and one RAPD (random amplified polymorphic DNA) marker, OPB-11a, closely linked (1.4 cM) to this locus. Palmitic-acid content in the 62 F2 plants with the visible allele of marker OPB-11a was 8.45 ±3.15%, while that in the 24 plants without it was 4.59 ±0.97%. As oleic-acid concentration is affected by a locus on the same linkage group as the palmitic-acid locus, this locus probably controls the chain elongation from palmitic acid to oleic acid (through stearic acid). Marker OPB-11a may be used in future breeding programs of spring turnip rape to simplify and hasten the selection for palmitic-acid content.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00222976DOI Listing

Publication Analysis

Top Keywords

palmitic-acid content
16
spring turnip
12
turnip rape
12
marker opb-11a
12
rape brassica
8
brassica rapa
8
rapa ssp
8
ssp oleifera
8
linkage group
8
palmitic-acid
6

Similar Publications

Protection Strategies Against Palmitic Acid-Induced Lipotoxicity in Metabolic Syndrome and Related Diseases.

Int J Mol Sci

January 2025

Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico.

Diets rich in carbohydrate and saturated fat contents, when combined with a sedentary lifestyle, contribute to the development of obesity and metabolic syndrome (MetS), which subsequently increase palmitic acid (PA) levels. At high concentrations, PA induces lipotoxicity through several mechanisms involving endoplasmic reticulum (ER) stress, mitochondrial dysfunction, inflammation and cell death. Nevertheless, there are endogenous strategies to mitigate PA-induced lipotoxicity through its unsaturation and elongation and its channeling and storage in lipid droplets (LDs), which plays a crucial role in sequestering oxidized lipids, thereby reducing oxidative damage to lipid membranes.

View Article and Find Full Text PDF

Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body's energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic dysfunction. These adiposity-associated pathologies can be influenced by dietary components and their potential health benefits.

View Article and Find Full Text PDF

, an edible wild plant, is valued for its distinctive flavor and health-promoting properties. This study examines the proximate composition, bioactive compounds, and in vitro biological activities of seven leaves (, , , , var. , and ).

View Article and Find Full Text PDF

This study is the first to investigate the impact of indigenous non-Saccharomyces yeasts, including , /, , , , , , , , and on the lipid composition of sterile Maraština grape juice and wines using the UHPLC-MS/MS method. Yeasts were tested in monoculture and sequential fermentations alongside commercial . Indigenous non-Saccharomyces yeasts showed the potential to improve fermentation performance and enable the development of new wine styles through the biosynthesis of an unsaturated fatty acid pathway, which was identified as the most significant pathway.

View Article and Find Full Text PDF

Oil Content and Fatty Acid Composition of Safflower ( L.) Germplasm.

Foods

January 2025

Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Türkiye.

Safflower ( L.) is a promising oilseed crop with potential applications in the food, pharmaceutical, and industrial sectors. Understanding the oil content and fatty acid composition of safflower germplasm is crucial for breeding programs aimed at enhancing its agronomic and nutritional traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!