Simultaneous induction of high level thermal and visible-light catalytic activities to titanium(IV) oxide by surface modification with cobalt(III) oxide clusters.

Phys Chem Chem Phys

Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

Published: December 2013

This study first presents a "TiO2-based eco-catalyst" working in the dark and under visible-light irradiation for the degradation of environmental organic pollutants. Molecular scale cobalt(III) oxide clusters are formed on the surface of highly active anatase TiO2 nanoparticles (Co2O3-TiO2) by the chemisorption-calcination cycle method. Co2O3-TiO2 exhibits very high visible-light activities for the degradation of 2-naphthol and formic acid used as model organic pollutants. Unprecedented thermocatalytic activity is concomitantly endowed on TiO2 by the surface modification. Prolonging reaction time in the Co2O3-TiO2 photo- and thermo-catalyzed reactions leads to the decomposition of 2-naphthol and formic acid to CO2. The essential action mechanisms of the Co2O3 clusters in the photocatalysis and thermocatalysis of Co2O3-TiO2 were discussed on the basis of spectroscopic and electrochemical data.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp54304hDOI Listing

Publication Analysis

Top Keywords

surface modification
8
cobaltiii oxide
8
oxide clusters
8
organic pollutants
8
2-naphthol formic
8
formic acid
8
simultaneous induction
4
induction high
4
high level
4
level thermal
4

Similar Publications

Unlocking the Key to Photocatalytic Hydrogen Production Using Electronic Mediators for Z-Scheme Water Splitting.

J Am Chem Soc

January 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.

A prevalent challenge in particulate photocatalytic water splitting lies in the fact that while numerous photocatalysts exhibit outstanding hydrogen evolution reaction (HER) activity in organic sacrificial reagents, their performance diminishes markedly in a Z-scheme water splitting system using electronic mediators. This underlying reason remains undefined, posing a long-standing issue in photocatalytic water splitting. Herein, we unveiled that the primary reason for the decreased HER activity in electronic mediators is due to the strong adsorption of shuttle ions on cocatalyst surfaces, which inhibits the initial proton reduction and results in a severe backward reaction of the oxidized shuttle ions.

View Article and Find Full Text PDF

Quantifying tear exchange during rigid contact lens wear using corneoscleral profilometry: A proof of concept study.

Ophthalmic Physiol Opt

January 2025

Contact Lens and Visual Optics Laboratory, Optometry and Vision Science, Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia.

Introduction: Tear exchange during contact lens wear is essential for ocular surface integrity, facilitating debris removal, and maintaining corneal metabolism. Fluorophotometry and fluorogram methods are typically used to measure tear exchange, which require hardware modifications to a slit lamp biomicroscope. This manuscript introduces an alternative method using a corneoscleral profilometer, the Eye Surface Profiler (ESP), to quantify tear exchange during corneal and scleral rigid lens wear by assessing fluorescence intensity changes over time.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.

View Article and Find Full Text PDF

With the advancement of ecological and environmental protection construction, the research on the modification of expansive soil using environmentally friendly polymers can make up for the harm to the ecological environment caused by traditional modification. Mechanical and microscopic properties of modified expansive soils were analyzed through indoor tests. The results showed that the liquid limit and plasticity index decreased by 52.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!