New heterocyclic systems to afford microsecond green-light isomerisable azo dyes and their use as fast molecular photochromic switches.

Chem Commun (Camb)

Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, E-08028, Barcelona, Spain.

Published: December 2013

The use of benzothiazole as an electron-withdrawing group allows obtaining the fastest thermal isomerisation kinetics reported heretofore for neutral azo dyes (70 μs at 298 K). These green light activatable molecules are valuable candidates as molecular photoswitches since they tolerate thousands of working cycles with no sign of fatigue.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc46736hDOI Listing

Publication Analysis

Top Keywords

azo dyes
8
heterocyclic systems
4
systems afford
4
afford microsecond
4
microsecond green-light
4
green-light isomerisable
4
isomerisable azo
4
dyes fast
4
fast molecular
4
molecular photochromic
4

Similar Publications

Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy.

View Article and Find Full Text PDF

We serendipitously discovered a novel series of azoheteroarene dyes capable of detecting pH variations in near-neutral solutions. These dyes feature thiazole, thiadiazole, triazole, pyrazole, or benzothiazole heteroaryls linked to hydroxyphenyl azo groups. They exhibit distinctive light absorption properties in aqueous solutions and show notable color changes in a narrow pH range, visible to the naked eye.

View Article and Find Full Text PDF

The widespread use of electronic devices has led to increased blue light exposure, highlighting the need for effective radiation blockers with blue light protection. Two synthetic 2-(2'-hydroxyphenyl)benzoxazole derivatives named azo-4'-benzoxazole and azo-5'-benzoxazole have shown an unprecedented blue light absorption capacity but had not been subjected to a safety evaluation. This study aimed to evaluate the cytotoxic, genotoxic, and mutagenic activities of these compounds.

View Article and Find Full Text PDF

This work represents a systematic computational study of structural and optoelectronic properties of 24 phenylazo-2-naphthol derivatives using the DFT-B3LYP/6-31 + G(d,p) method. The positional isomers of azo compounds have been designed by introducing an azophenyl unit (with and without substituents) at three different (1-, 3-, and 4-) positions of 2-naphthols. This result shows that depending on the linking position of the azophenyl unit and substituents (NO and maleimide), the -azo, -azo, and hydrazo forms of our substituted azo derivatives possess distinguished UV-vis absorption and charge-transfer properties compared to unsubstituted Sudan I derivatives.

View Article and Find Full Text PDF

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!