Germline mutation in the adenomatous polyposis coli (APC) gene causes the majority (80%) of familial adenomatous polyposis (FAP), an autosomal dominantly inherited form of colorectal cancer (CRC). Mutation in 5'end of exon 9 of APC usually results in an attenuated form of FAP (aFAP), characterized by later age of onset and fewer polyps. The presence of exon 9a, an in-frame isoform with exon 8 spliced to 3'end of exon 9, modulates any deleterious effect of the mutation. A third lowly expressed isoform that completely skips exon 9 is present in both healthy individuals and FAP patients. We report here an interesting case of a proband with an APC mutation in 5'end of exon 9 that presented with six synchronous advanced CRCs at age 37. The novel insertion-deletion (indel) at codon 409, c.1226-1229delTTTTinsAAA, caused upregulation of the 'skip exon 9' isoform, r934-1312del, resulting in a premature stop codon at exon 10 and a truncated protein that removed all of the β-catenin (CTNNB1) binding motifs, thus activating the downstream T-cell transcription factor (Tcf) pathway. Exon 9a isoform was concomitantly downregulated. This finding emphasizes the necessity of examining the various isoforms of exon 9 to avoid clinical mismanagement and counseling based on just the mutation site by genomic DNA sequencing alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023219PMC
http://dx.doi.org/10.1038/ejhg.2013.245DOI Listing

Publication Analysis

Top Keywords

exon
12
exon isoform
12
adenomatous polyposis
12
exon apc
8
'skip exon
8
familial adenomatous
8
mutation 5'end
8
5'end exon
8
isoform
5
mutation
5

Similar Publications

Previous data show that the knockdown of the gene in the MDA-MB-231 cell line leads to the downregulation of gene expression. In addition, and genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the gene.

View Article and Find Full Text PDF

TCP is a plant-specific transcription factor that plays an important role in plant growth and development. In this study, we used bioinformatics to identify the entire genome of the gene family in Bat, and we analyzed the expression characteristics of genes under UV-B radiation using qRT-PCR. The results were as follows: (1) 24 members of the gene family were identified in , evenly distributed on its 24 chromosomes.

View Article and Find Full Text PDF

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

The heat shock protein 70 (HSP70) family plays an important role in the growth and development of lettuce and in the defense response to high-temperature stress; however, its bioinformatics analysis in lettuce has been extremely limited. Genome-wide bioinformatics analysis methods such as chromosome location, phylogenetic relationships, gene structure, collinearity analysis, and promoter analysis were performed in the gene family, and the expression patterns in response to high-temperature stress were analyzed. The mechanism of in heat resistance in lettuce was studied by virus-induced gene silencing (VIGS) and transient overexpression techniques.

View Article and Find Full Text PDF

Transcriptomic analysis reveals the crucial role of YABBY genes family in hormonal induced parthenocarpy in Cucumis sativus L.

BMC Plant Biol

January 2025

Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sugarcane Research Center, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, Hainan, 571101, China.

Background: The plant-specific YABBY transcription factor family plays several activities, including responding to abiotic stress, establishing dorsoventral polarity, and developing lateral organs. Cucumis sativus L. commonly referred to as cucumber and one of the first vegetable crops with a fully sequenced genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!