Compounds that activate macrophage antimicrobial activity are potential targets for treatment of leishmaniasis. The present study investigated the in vitro immunomodulatory effects of a galactomannan (GALMAN-A) isolated from seeds of Mimosa scabrella and its oxovanadium (IV/V) complex (GALMAN-A:VO(2+)/VO(3+)) on macrophage activity. GALMAN-A increased nitric oxide levels by ~33% at a concentration of 250μg/ml, while GALMAN-A:VO(2+)/VO(3+) decreased nitric oxide levels by ~33% at a concentration of 50μg/ml. Furthermore, GALMAN-A increased interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) levels by 5.5 and 2.3 times, respectively, at a concentration of 25μg/ml; at the same concentration, GALMAN-A:VO(2+)/VO(3+) promoted an increase in IL-1β and IL-6 production by 8 and 5.5 times, respectively. However, neither GALMAN-A nor GALMAN-A:VO(2+)/VO(3+) affected tumor necrosis factor alpha (TNF-α) or interleukin-10 (IL-10) levels. Importantly, both GALMAN-A and GALMAN-A:VO(2+)/VO(3+) exhibited leishmanicidal activity on amastigotes of Leishmania (L.) amazonensis, reaching ~60% activity at concentrations of 100 and 25μg/ml, respectively. These results indicate that GALMAN-A is three times more potent and its oxovanadium complex is twelve times more potent than Glucantime (300μg/ml), which is the drug of choice in leishmaniasis treatment. The IC50 value for GALMAN-A:VO(2+)/VO(3+) was 74.4μg/ml (0.58μg/ml of vanadium). Thus, the significant activation of macrophages and the noted leishmanicidal effect demonstrate the need for further studies to clarify the mechanisms of action of these compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2013.09.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!