We investigated the mucus-binding properties of aggregating and non-aggregating potentially probiotic strains of kefir-isolated Lactobacillus kefiri, using different substrates. All the strains were able to adhere to commercial gastric mucin (MUCIN) and extracted mucus from small intestine (SIM) and colon (CM). The extraction of surface proteins from bacteria using LiCl or NaOH significantly reduced the adhesion of three selected strains (CIDCA 8348, CIDCA 83115 and JCM 5818); although a significant proportion (up to 50%) of S-layer proteins were not completely eliminated after treatments. The surface (S-layer) protein extracts from all the strains of Lb. kefiri were capable of binding to MUCIN, SIM or CM, and no differences were observed among them. The addition of their own surface protein extract increased adhesion of CIDCA 8348 and 83115 to MUCIN and SIM, meanwhile no changes in adhesion were observed for JCM 5818. None of the seven sugars tested had the ability to inhibit the adhesion of whole bacteria to the three mucus extracts. Noteworthy, the degree of bacterial adhesion reached in the presence of their own surface protein (S-layer) extract decreased to basal levels in the presence of some sugars, suggesting an interaction between the added sugar and the surface proteins. In conclusion, the ability of these food-isolated bacteria to adhere to gastrointestinal mucus becomes an essential issue regarding the biotechnological potentiality of Lb. kefiri for the food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0022029913000526 | DOI Listing |
Polycystic Ovary Syndrome (PCOS), which is common among women of reproductive age, is characterized by low-grade chronic inflammation and is associated with several health problems and dysbiosis. Kefir has been shown to have many beneficial health effects; however, its effect on PCOS is unknown. This study aimed to examine the effect of kefir on the intestinal microbiota and health outcomes in PCOS.
View Article and Find Full Text PDFNutrients
October 2023
School of Medicine, Universidad Alfonso X El Sabio, 28691 Madrid, Spain.
Food Chem
February 2024
Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China. Electronic address:
Tibet kefir grain (TKG) formation is mainly dependent on the aggregation of lactobacillus and yeasts. The interaction of surface layer protein (SLP) and yeast mannan plays an important role in mediating the co-aggregation of Lactobacillus kefiri with Saccharomyces cerevisiae. The interaction mechanism of the two was researched through multispectral spectroscopy, morphology observation and silico approaches.
View Article and Find Full Text PDFFoods
April 2023
Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
Soybeans possess unexpected flavors and are difficult to be absorbed by the gastrointestinal tract. Kefir grain fermentation provides diverse strains and bioactive compounds, which may enhance flavor and bioaccessibility. Third-generation sequencing was applied to analyze the microbial diversity in milk and soybean kefir grains in this study.
View Article and Find Full Text PDFFront Nutr
February 2023
PNK Farmaceutici S.p.a., Castelnuovo Vomano, Italy.
Introduction: Inflammatory bowel diseases (IBD) are chronic inflammatory conditions that typically involve diarrhea, abdominal pain, fatigue, and weight loss, with a dramatic impact on patients' quality of life. Standard medications are often associated with adverse side effects. Thus, alternative treatments such as probiotics are of great interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!