Lifelong expression of apolipoprotein D in the human brainstem: correlation with reduced age-related neurodegeneration.

PLoS One

Instituto de Neurociencias del Principado de Asturias (INEUROPA), Dpto. Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Asturias, Spain.

Published: May 2014

The lipocalin apolipoprotein D (Apo D) is upregulated in peripheral nerves following injury and in regions of the central nervous system, such as the cerebral cortex, hippocampus, and cerebellum, during aging and progression of certain neurological diseases. In contrast, few studies have examined Apo D expression in the brainstem, a region necessary for survival and generally less prone to age-related degeneration. We measured Apo D expression in whole human brainstem lysates by slot-blot and at higher spatial resolution by quantitative immunohistochemistry in eleven brainstem nuclei (the 4 nuclei of the vestibular nuclear complex, inferior olive, hypoglossal nucleus, oculomotor nucleus, facial motor nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and Roller`s nucleus). In contrast to cortex, hippocampus, and cerebellum, apolipoprotein D was highly expressed in brainstem tissue from subjects (N = 26, 32-96 years of age) with no history of neurological disease, and expression showed little variation with age. Expression was significantly stronger in somatomotor nuclei (hypoglossal, oculomotor, facial) than visceromotor or sensory nuclei. Both neurons and glia expressed Apo D, particularly neurons with larger somata and glia in the periphery of these brainstem centers. Immunostaining was strongest in the neuronal perinuclear region and absent in the nucleus. We propose that strong brainstem expression of Apo D throughout adult life contributes to resistance against neurodegenerative disease and age-related degeneration, possibly by preventing oxidative stress and ensuing lipid peroxidation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805570PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077852PLOS

Publication Analysis

Top Keywords

human brainstem
8
cortex hippocampus
8
hippocampus cerebellum
8
apo expression
8
age-related degeneration
8
motor nucleus
8
brainstem
7
nucleus
7
apo
5
expression
5

Similar Publications

Historically, Friedreich's Ataxia (FRDA) has been linked to a relatively preserved cerebellar cortex. Recent advances in neuroimaging have revealed altered cerebello-cerebral functional connectivity (FC), but the extent of intra-cerebellar FC changes and their impact on cognition remains unclear. This study investigates intra-cerebellar FC alterations and their cognitive implications in FRDA.

View Article and Find Full Text PDF

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Hydrocephalus in primary brainstem hemorrhage risk predictors and management.

Sci Rep

January 2025

Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.

This study explored the risk factors associated with hydrocephalus incidence and evaluated the effectiveness of surgical treatments in managing this condition. Patients with PBSH were retrospectively evaluated, identifying clinical and radiological characteristics. A multivariate logistic regression model was used for analyses.

View Article and Find Full Text PDF

MiRNAs as major players in brain health and disease: current knowledge and future perspectives.

Cell Death Discov

January 2025

Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.

MicroRNAs are regulators of gene expression and their dysregulation can lead to various diseases. MicroRNA-135 (MiR-135) exhibits brain-specific expression, and performs various functions such as neuronal morphology, neural induction, and synaptic function in the human brain. Dysfunction of miR-135 has been reported in brain tumors, and neurodegenerative and neurodevelopmental disorders.

View Article and Find Full Text PDF

Background: The prevalence of hearing loss in infants in India varies between 4 and 5 per 1000. Objective-based otoacoustic emissions and auditory brainstem response have been used in high-income countries for establishing early hearing screening and intervention programs. Nevertheless, the use of objective screening tests in low- and middle-income countries (LMICs) such as India is not feasible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!