Aptamers are promising affinity reagents that are potentially well suited for high-throughput discovery, as they are chemically synthesized and discovered via completely in vitro selection processes. Recent advancements in selection, sequencing, and the use of modified bases have improved aptamer quality, but the overall process of aptamer generation remains laborious and low-throughput. This is because binding characterization remains a critical bottleneck, wherein the affinity and specificity of each candidate aptamer are measured individually in a serial manner. To accelerate aptamer discovery, we devised the Quantitative Parallel Aptamer Selection System (QPASS), which integrates microfluidic selection and next-generation sequencing with in situ-synthesized aptamer arrays, enabling simultaneous measurement of affinity and specificity for thousands of candidate aptamers in parallel. After using QPASS to select aptamers for the human cancer biomarker angiopoietin-2 (Ang2), we in situ synthesized arrays of the selected sequences and obtained equilibrium dissociation constants (Kd) for every aptamer in parallel. We thereby identified over a dozen high-affinity Ang2 aptamers, with Kd as low as 20.5 ± 7.3 nM. The same arrays enabled us to quantify binding specificity for these aptamers in parallel by comparing relative binding of differentially labeled target and nontarget proteins, and by measuring their binding affinity directly in complex samples such as undiluted serum. Finally, we show that QPASS offers a compelling avenue for exploring structure-function relationships for large numbers of aptamers in parallel by coupling array-based affinity measurements with next-generation sequencing data to identify nucleotides and motifs within the aptamer that critically affect Ang2 binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831996 | PMC |
http://dx.doi.org/10.1073/pnas.1315866110 | DOI Listing |
Toxins (Basel)
November 2024
Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11355, Saudi Arabia.
In this report, we describe a fluorescent assay for the detection of six marine toxins in water. The mechanism of detection is based on a duplex-to-complex structure-switching approach. The six aptamers specific to the targeted cyanotoxins were conjugated to a fluorescent dye, carboxyfluorescein (FAM).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy. Electronic address:
In this work, we present the case of the G-quadruplex(G4)-forming aptamers we recently identified for the recognition of HMGB1, protein involved in inflammation, autoimmune diseases and cancer. These aptamers were previously analyzed, without annealing them, after proper dilution of the stock solution in a pseudo-physiological buffer mimicking the extracellular environment where the protein exerts its pathological activity, and showed high thermal stability and nuclease resistance, good protein affinity and remarkable in vitro activity. These features were more marked for the aptamers forming dimeric, parallel G4 structures in solution.
View Article and Find Full Text PDFFungal Biol Biotechnol
November 2024
Research Group Biochemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.
Background: Spores produced by the filamentous fungus Aspergillus niger are abundant in a variety of environments. The proliferation of this fungus in indoor environments has been associated to health risks and its conidia can cause allergic reaction and severe invasive disease in animals and humans. Therefore, the detection and monitoring of Aspergillus conidia is of utmost importance to prevent serious fungal infections and contaminations.
View Article and Find Full Text PDFMikrochim Acta
October 2024
Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China.
A truncated aptamer (designated A24-3) was identified that specifically binds to bovine pregnancy-associated glycoproteins (bPAG9) with a low dissociation constant (2.04 nM) through two truncation approaches. Circular dichroism spectroscopy indicated that A24-3 formed parallel G-quadruplexes, which was subsequently confirmed using nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFBiosensors (Basel)
September 2024
Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
Tumor cell-induced platelet aggregation (TCIPA) is a mechanism for the protection of tumor cells in the bloodstream and the promotion of tumor progression and metastases. The platelet C-type lectin-like receptor 2 (CLEC-2) can bind podoplanin (PDPN) on a cancer cell surface to facilitate TCIPA. Selective blockage of PDPN-mediated platelet-tumor cell interaction is a plausible strategy for inhibiting metastases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!