Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering.

J Biomed Mater Res A

Ankara University, Stem Cell Institute, TEBN Laboratory, Ankara, Turkey; Department of Chemistry, Ankara University, Faculty of Science, TEBN Laboratory, Ankara, Turkey.

Published: September 2014

Polycaprolactone/silica microporous hybrid membranes were produced in two steps: A microporous polycaprolactone membrane with an interconnected porosity of 80% was obtained via a freeze extraction procedure, then silica was formed by a sol-gel reaction inside the micropores using tetraethyl orthosilicate, TEOS, as silica precursor. It is shown that silica forms a thin coating layer homogeneously distributed over the pore walls when sol-gel reaction is catalyzed by hydrochloric acid, while it forms submicron spherical particles when using basic catalyzer. Some physical properties and the viability and osteoblastic differentiation of bone marrow rat mesenchymal stem cells cultured on pure and hybrid membranes were studied.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.34999DOI Listing

Publication Analysis

Top Keywords

pore walls
8
microporous polycaprolactone
8
polycaprolactone membrane
8
hybrid membranes
8
sol-gel reaction
8
silica
4
silica coating
4
coating pore
4
walls microporous
4
membrane bone
4

Similar Publications

This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.

View Article and Find Full Text PDF

The colonial system of integration (CSI) provides intracolonial nutrient supply in many gymnolaemate bryozoans. In Ctenostomata, its presence is known for species with stolonal colonies, for example, vesicularioideans, but its structure is almost unexplored. The CSI is thought to be absent in alcyonidioideans and other ctenostomes.

View Article and Find Full Text PDF

Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.

View Article and Find Full Text PDF

Modified Magnesium Oxysulfate Foam Cement Doped with Iron Tailings.

Materials (Basel)

December 2024

State Key Laboratory of South China Sea Marine Resources Utilization, School of Materials Science and Engineering, Hainan University, Haikou 570100, China.

The enhancement of the utilization rate of solid waste, along with balancing the comprehensive performance of materials, presents a significant challenge in the development of new functional building materials. This study examined the effects of high concentrations of iron tailing powder on the crystallization characteristics, pore structure, compressive strength, and water absorption of modified magnesium oxysulfate (MOS) foam cement with different dry densities. Furthermore, employing chemical foaming technology, the study characterized and analyzed the microstructure of modified MOS foam cement hydration products through scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD).

View Article and Find Full Text PDF

The design and construction of dual-functional and high-efficiency electrochemical sensors are necessary for quantitative detection. In this work, a zinc-based metal-organic framework (MOF-5) and multi-walled carbon nanotubes (MWCNTs) were combined in situ through a simple solvothermal reaction to obtain an MOF-5@MWCNTs composite. The composite exhibits a large surface area, hierarchical pore structure, excellent conductivity, and enhanced electrochemical performance in the detection of acetaminophenol (AP) and dopamine (DA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!