Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen particularly associated with the inherited disease cystic fibrosis (CF). Pseudomonas aeruginosa is well known to have a large and adaptable genome that enables it to colonise a wide range of ecological niches. Here, we have used a comparative genomics approach to identify changes that occur during infection of the CF lung. We used the mucoid phenotype as an obvious marker of host adaptation and compared these genomes to analyse SNPs, indels and islands within near-isogenic pairs. To commence the correction of the natural bias towards clinical isolates in genomics studies and to widen our understanding of the genomic diversity of P. aeruginosa, we included four environmental isolates in our analysis. Our data suggest that genome plasticity plays an important role in chronic infection and that the strains sequenced in this study are representative of the two major phylogenetic groups as determined by core genome SNP analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/2049-632X.12107DOI Listing

Publication Analysis

Top Keywords

pseudomonas aeruginosa
12
environmental isolates
8
core genome
8
draft genomes
4
genomes host-adapted
4
host-adapted environmental
4
isolates pseudomonas
4
aeruginosa
4
aeruginosa positions
4
positions core
4

Similar Publications

Background: Carbapenem-Resistant Gram-Negative Bacteria, including Carbapenem-Resistant Enterobacterales (CRE) and Carbapenem-Resistant Pseudomonas aeruginosa (CRPA), are common causes of infections in intensive care units (ICUs) in Italy.

Objective: This prospective observational study evaluated the epidemiology, management, microbiological characterization, and outcomes of hospital-acquired CRE or CRPA infections treated in selected ICUs in Italy.

Methods: The study included patients with hospital-acquired infections due to CRE and CRPA treated in 20 ICUs from June 2021 to February 2023.

View Article and Find Full Text PDF

Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.

View Article and Find Full Text PDF

High-Copy IncP-2 Megaplasmid Carrying bla in Clinical Difficult-to-Treat Resistance Pseudomonas aeruginosa: Associated with High-Level Cefiderocol Resistance.

J Infect

January 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. Electronic address:

View Article and Find Full Text PDF

Introduction: Febrile urinary tract infections are major complications of radical cystectomy; however, their characteristics after robot-assisted radical cystectomy remain unclear. Thus, we investigated the rate, severity, pathogens, and risk factors of febrile urinary tract infections after robot-assisted radical cystectomy.

Patients And Methods: Patients who underwent robot-assisted radical cystectomy at three institutions between April 2018 and March 2022 were retrospectively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!