Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245408 (XL147), an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors.

Clin Cancer Res

Authors' Affiliations: Dana-Farber Cancer Institute; Massachusetts General Hospital; Beth Israel Deaconess Medical Center, Boston, Massachusetts; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Mary Crowley Cancer Research Centers, Dallas, Texas; Exelixis Inc., South San Francisco, California; and Sanofi, Cambridge, Massachusetts, and Vitry-sur-Seine, France.

Published: January 2014

Purpose: SAR245408 is a pan-class I phosphoinositide 3-kinase (PI3K) inhibitor. This phase I study determined the maximum tolerated dose (MTD) of two dosing schedules [first 21 days of a 28-day period (21/7) and continuous once-daily dosing (CDD)], pharmacokinetic and pharmacodynamic profiles, and preliminary efficacy.

Experimental Design: Patients with refractory advanced solid malignancies were treated with SAR245408 using a 3 + 3 design. Pharmacokinetic parameters were determined after single and repeated doses. Pharmacodynamic effects were evaluated in plasma, hair sheath cells, and skin and tumor biopsies.

Results: Sixty-nine patients were enrolled. The MTD of both schedules was 600 mg; dose-limiting toxicities were maculopapular rash and hypersensitivity reaction. The most frequent drug-related adverse events included dermatologic toxicities, diarrhea, nausea, and decreased appetite. Plasma pharmacokinetics showed a median time to maximum concentration of 8 to 22 hours, mean terminal elimination half-life of 70 to 88 hours, and 5- to 13-fold accumulation after daily dosing (first cycle). Steady-state concentration was reached between days 15 and 21, and exposure was dose-proportional with doses up to 400 mg. SAR245408 inhibited the PI3K pathway (∼40%-80% reduction in phosphorylation of AKT, PRAS40, 4EBP1, and S6 in tumor and surrogate tissues) and, unexpectedly, also inhibited the MEK/ERK pathway. A partial response was seen in one patient with advanced non-small cell lung cancer. Eight patients were progression-free at 6 months. Pharmacodynamic and clinical activity were observed irrespective of tumor PI3K pathway molecular alterations.

Conclusions: SAR245408 was tolerable at doses associated with PI3K pathway inhibition. The recommended phase II dose of the capsule formulation is 600 mg administered orally with CDD.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-13-1777DOI Listing

Publication Analysis

Top Keywords

pi3k pathway
12
pharmacokinetic pharmacodynamic
8
pi3k inhibitor
8
advanced solid
8
sar245408
5
pi3k
5
phase safety
4
safety pharmacokinetic
4
pharmacodynamic
4
pharmacodynamic study
4

Similar Publications

Severe sepsis can promote myocardial injury and cardiac dysfunction, but role of p16 in sepsis-induced myocardial injury remains undefined. PBMCs were collected from patients. Expression of inflammatory factors and NLRP3 pathway were detected by Western blotting and qPCR in WT and p16KO mice.

View Article and Find Full Text PDF

The gene F-box only protein 22 (FBXO22) has been discovered to promote the development of liver cancer tumors. Nevertheless, there remains considerable ambiguity regarding the involvement of FBXO22 in the processes of angiogenesis and metastasis in hepatocellular carcinoma (HCC). Our study has confirmed a significant upregulation of FBXO22 expression in both HCC samples and cellular models.

View Article and Find Full Text PDF

Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis.

View Article and Find Full Text PDF

The anti-inflammatory effect of phellodendrine (PHE), derived from Phellodendri Chinensis Cortex, has been verified in previous studies. Major depressive disorder (MDD) is associated with immune dysregulation and inflammatory processes. This study aimed to explore the therapeutic effects of PHE on MDD through network pharmacology and experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!