Background: Mohawk (Mkx) is a homeodomain-containing transcription factor that is expressed in various mesoderm-derived tissues, particularly in developing tendons. In this study, we investigate the exact expression pattern and functions of Mkx in forelimbs.

Methods: We analyzed the forelimbs of Mkx knockout mice [from embryonic day (E) 18.5 to postnatal day (P) 28 weeks] by using knocked-in Venus signals, Masson trichrome staining, and hematoxylin and eosin (H&E) staining.

Results: We detected Venus signals in forelimb tendons, pulleys, and volar plates (VPs) in P21 mice. In-depth histological analysis showed that compared to the wild-type mice, the Mkx knockout mice showed significant hypoplasia in the flexor digitorum profundus tendons from E18.5. The VPs and pulleys appeared normal until P0; however, by P14, they became increasingly thicker in Mkx-null mice compared to wild-type mice. The fiber alignment was particularly disrupted in VPs of Mkx-null mice.

Conclusions: These results suggest that Mkx is an important regulator of the differentiation of VPs and pulleys, as well as of tendon differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943675PMC
http://dx.doi.org/10.1007/s00776-013-0485-zDOI Listing

Publication Analysis

Top Keywords

transcription factor
8
volar plates
8
mkx knockout
8
knockout mice
8
venus signals
8
compared wild-type
8
wild-type mice
8
vps pulleys
8
mice
6
mkx
5

Similar Publications

Isoniazid and rifampicin co-therapy are the main causes of anti-tuberculosis drug-induced liver injury (ATB-DILI) and acute liver failure, seriously threatening human health. However, its pathophysiology is not fully elucidated. Growing evidences have shown that fibroblast growth factors (FGFs) play a critical role in diverse aspects of liver pathophysiology.

View Article and Find Full Text PDF

Super-enhancer Activates Master Transcription Factor NR3C1 Expression and Promotes 5-FU Resistance in Gastric Cancer.

Adv Sci (Weinh)

December 2024

Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Poor response to 5-fluorouracil (5-FU) remains an obstacle in the treatment of gastric cancer (GC). Super enhancers (SEs) are crucial for determining tumor cell survival under drug pressure. SE landscapes related to 5-FU-resistance are mapped to GC using chromatin immunoprecipitation-sequencing (ChIP-Seq).

View Article and Find Full Text PDF

The OsMAPK6-OsWRKY72 module positively regulates rice leaf angle through brassinosteroid signals.

Plant Commun

December 2024

Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan' Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Leaf angle is a major agronomic trait that determines plant architecture, which directly affects rice planting density, photosynthetic efficiency, and yield. The plant phytohormones brassinosteroids (BRs) and the MAPK signaling cascade are known to play crucial roles in regulating the leaf angle, but the underlying molecular mechanisms are not fully understood. Here, we report a rice WRKY family transcription factor gene, OsWRKY72, which positively regulates leaf angle by affecting lamina joint development and BR signaling.

View Article and Find Full Text PDF

Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.

Methods And Results: In this study, we employed a discovery-driven, unbiased approach.

View Article and Find Full Text PDF

Background: Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!