Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Canavanine, diaminopropane, alpha-methylornithine and methylglyoxal bis(guanylhydrazone) decreased the intracellular polyamine concentrations in growing baby hamster kidney cells. Each of the inhibitors also prevented polyamine efflux into the extracellular medium. Concomitant with the decrease in polyamine excretion was a change in the distribution of polyamines in the extracellular medium. In each case there was a decrease in the amount of radioactivity present as free spermidine and an increase in that found as acetyl polyamines. The magnitude of this shift correlated with the degree of inhibition of excretion. It may be that acetyl polyamines play a role in the regulation of polyamine excretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-5793(86)80051-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!