Hematopoietic stem cells (HSCs) and blood cell progenitors, such as maturing leucocytes, steadily enter from bone marrow (BM) into the circulation under steady-state conditions, and their mobilization is dramatically amplified during stress conditions and by mediators such as granulocyte colony-stimulating factor (G-CSF). This mobilization is dependent upon bone remodeling, the proteolytic enzymes of bone marrow-derived stromal cells, and adhesion molecules such as integrin, but the main mechanisms controlling this traffic are still unclear. The nervous system, as the most important regulator of the body, can affect the mobilization network by secreting catecholamines, so that denervation of catecholaminergic fibers in the BM of mice could lead to declining mobilization in steady state and stress situations, even in the presence of other intact environmental factors in the BM. Thus, due to the importance of the nervous system, we have attempted to give a general overview of how the nervous system is involved in the mobilization of HSCs in this review. Then, we will try to describe the mobilization process induced by the nervous system, which consists of 3 mechanisms: stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4), proteolytic enzymes, and bone remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1532/LH96.12013 | DOI Listing |
Lab Anim
January 2025
Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.
Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland.
The dorsolateral prefrontal cortex (dlPFC) is increasingly targeted by various noninvasive transcranial magnetic stimulation or transcranial current stimulation protocols in a range of neuropsychiatric and other brain disorders. The rationale for this therapeutic modulation remains elusive. A model is proposed, and up-to-date evidence is discussed, suggesting that the dlPFC is a high-level cortical centre where uncertainty management, movement facilitation, and cardiovascular control processes are intertwined and integrated to deliver optimal behavioural responses in particular environmental or emotional contexts.
View Article and Find Full Text PDFCell Adh Migr
December 2025
Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
Peripheral nerve injury repair has always been a research concern of scientists. At the tissue level, axonal regeneration has become a research spotlight in peripheral nerve repair. Through transplantation of autologous nerve grafts or other emerging biomaterials functional recovery after facial nerve injury is not ideal in clinical scenarios.
View Article and Find Full Text PDFFront Parasitol
July 2024
Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru.
Neurocysticercosis (NCC) is caused by the invasion of larvae in the central nervous system (CNS) and stands as the predominant cause of epilepsy and other neurological disorders in many developing nations. NCC diagnosis is challenging because it relies on brain imaging exams (CT or MRI), which are poorly available in endemic rural or resource-limited areas. Moreover, some NCC cases cannot be easily detected by imaging, leading to inconclusive results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!