The assessment of left ventricular function, wall motion and myocardial viability using electrocardiogram (ECG)-gated [(18)F]-FDG positron emission tomography (PET) is widely accepted in human and in preclinical small animal studies. The nonterminal and noninvasive approach permits repeated in vivo evaluations of the same animal, facilitating the assessment of temporal changes in disease or therapy response. Although well established, gated small animal PET studies can contain erroneous gating information, which may yield to blurred images and false estimation of functional parameters. In this work, we present quantitative and visual quality control (QC) methods to evaluate the accuracy of trigger events in PET list-mode and physiological data. Left ventricular functional analysis is performed to quantify the effect of gating errors on the end-systolic and end-diastolic volumes, and on the ejection fraction (EF). We aim to recover the cardiac functional parameters by the application of the commonly established heart rate filter approach using fixed ranges based on a standardized population. In addition, we propose a fully reprocessing approach which retrospectively replaces the gating information of the PET list-mode file with appropriate list-mode decoding and encoding software. The signal of a simultaneously acquired ECG is processed using standard MATLAB vector functions, which can be individually adapted to reliably detect the R-peaks. Finally, the new trigger events are inserted into the PET list-mode file. A population of 30 mice with various health statuses was analyzed and standard cardiac parameters such as mean heart rate (119 ms ± 11.8 ms) and mean heart rate variability (1.7 ms ± 3.4 ms) derived. These standard parameter ranges were taken into account in the QC methods to select a group of nine optimal gated and a group of eight sub-optimal gated [(18)F]-FDG PET scans of mice from our archive. From the list-mode files of the optimal gated group, we randomly deleted various fractions (5% to 60%) of contained trigger events to generate a corrupted group. The filter approach was capable to correct the corrupted group and yield functional parameters with no significant difference to the optimal gated group. We successfully demonstrated the potential of the fully reprocessing approach by applying it to the sub-optimal group, where the functional parameters were significantly improved after reprocessing (mean EF from 41% ± 16% to 60% ± 13%). When applied to the optimal gated group the fully reprocessing approach did not alter the functional parameters significantly (mean EF from 64% ± 8% to 64 ± 7%). This work presents methods to determine and quantify erroneous gating in small animal gated [(18)F]-FDG PET scans. We demonstrate the importance of a quality check for cardiac triggering contained in PET list-mode data and the benefit of optionally reprocessing the fully recorded physiological information to retrospectively modify or fully replace the cardiac triggering in PET list-mode data. We aim to provide a preliminary guideline of how to proceed in the presence of errors and demonstrate that offline reprocessing by filtering erroneous trigger events and retrospective gating by ECG processing is feasible. Future work will focus on the extension by additional QC methods, which may exploit the amplitude of trigger events and ECG signal by means of pattern recognition. Furthermore, we aim to transfer the proposed QC methods and the fully reprocessing approach to human myocardial PET/CT.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/58/22/7937DOI Listing

Publication Analysis

Top Keywords

pet list-mode
24
trigger events
24
reprocessing approach
20
functional parameters
20
fully reprocessing
16
optimal gated
16
gated group
16
small animal
12
heart rate
12
pet
10

Similar Publications

a new projector, orthogonal-distance ray-tracer varying-full width at half maximum (OD-RT-VF), was developed to model a shift-variant elliptical point-spread function (PSF) response to improve the image quality (IQ) of a preclinical dual-rotation PET system.the OD-RT-VF projector models different FWHM values of the PSF in multiple directions, using half-height and half-width tube-of-response (ToR) values. The OD-RT-VF method's performance was evaluated against the original OD-RT method and a ToR model with constant response.

View Article and Find Full Text PDF

Ultra-fast [F]florbetapir PET imaging using the uMI Panorama PET/CT system.

EJNMMI Phys

December 2024

Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.

Background: There is a need for faster amyloid PET scans to reduce patients' discomfort, minimize movement artifacts, and increase throughput. The recently introduced uMI Panorama PET/CT system featuring enhanced spatial resolution and sub-200ps TOF offers the potential for shorter scan duration without sacrificing image quality or efficacy to detect Aβ deposition. The study aims to establish a faster acquisition protocol for [F]florbetapir PET imaging using digital PET/CT scanner uMI Panorama, while ensuring adequate image quality and amyloid-β (Aβ) detectability comparable to the standard 10-minute scan.

View Article and Find Full Text PDF

Deep learning-based low count whole-body positron emission tomography denoising incorporating computed tomography priors.

Quant Imaging Med Surg

December 2024

Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China.

Background: Deep-learning-based denoising improves image quality and quantification accuracy for low count (LC) positron emission tomography (PET). Conventional deep-learning-based denoising methods only require single LC PET image input. This study aims to propose a deep-learning-based LC PET denoising method incorporating computed tomography (CT) priors to further reduce the dose level.

View Article and Find Full Text PDF
Article Synopsis
  • 124-iodine (I) is essential for PET diagnostics and therapy in differentiated thyroid cancer (DTC), but detecting small lesions (<10 mm) poses significant challenges due to low iodine uptake.
  • The study aimed to evaluate the effectiveness of non-time-of-flight (TOF) PET/MRI in identifying and quantifying small DTC lymph node lesions under difficult imaging conditions.
  • Results indicated that longer acquisition times, higher activity concentrations, and advanced reconstruction algorithms improved lesion visibility, with the smallest detectable size of 3.7 mm only visible under optimal settings.
View Article and Find Full Text PDF

Effects of List-Mode-Based Intraframe Motion Correction in Dynamic Brain PET Imaging.

IEEE Trans Radiat Plasma Med Sci

November 2024

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114 USA.

Motion is unavoidable in dynamic [F]-MK6240 Positron Emission Tomography (PET) imaging, especially in Alzheimer's disease (AD) research requiring long scan duration. To understand how motion correction affects quantitative analysis, we investigated two approaches: II-MC, which corrects for both inter-frame and intra-frame motion, and IO-MC, which only corrects for inter-frame motion. These methods were applied to 83 scans from 34 subjects, and we calculated distribution volume ratios (DVR) using the multilinear reference tissue model with two parameters (MRTM2) in tau-rich brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!