Dimensionality dependent water splitting mechanisms on free manganese oxide clusters.

Nano Lett

Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany.

Published: June 2014

The interaction of ligand-free manganese oxide nanoclusters with water is investigated, aiming at uncovering phenomena which could aid the design of artificial water-splitting molecular catalysts. Gas phase measurements in an ion trap in conjunction with first-principles calculations provide new mechanistic insight into the water splitting process mediated by bi- and tetra-nuclear singly charged manganese oxide clusters, Mn2O2(+) and Mn4O4(+). In particular, a water-induced dimensionality change of Mn4O4(+) is predicted, entailing transformation from a two-dimensional ring-like ground state structure of the bare cluster to a cuboidal octa-hydroxy-complex for the hydrated one. It is further predicted that the water splitting process is facilitated by the cluster dimensionality crossover. The vibrational spectra calculated for species occurring along the predicted pathways of the reaction of Mn4O4(+) with water provide the impetus for future explorations, including vibrational spectroscopic experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl4031456DOI Listing

Publication Analysis

Top Keywords

water splitting
12
manganese oxide
12
oxide clusters
8
splitting process
8
water
5
dimensionality dependent
4
dependent water
4
splitting mechanisms
4
mechanisms free
4
free manganese
4

Similar Publications

Interstitial Doping in Ultrafine Nanocrystals for Efficient and Durable Water Splitting.

Angew Chem Int Ed Engl

January 2025

Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.

Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.

View Article and Find Full Text PDF

Anisotropically Epitaxial P-N Heterostructures Actuating Efficient Z-Scheme Photocatalytic Water Splitting.

Small

January 2025

Key Laboratory of Eco-chemical Engineering, International S&T Cooperation Foundation of Eco-chemical Engineering and Green Manufacture, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Crafting anisotropically epitaxial p-n heterostructures with Z-scheme charge transmission is a promising avenue toward excellent photocatalytic efficiency, yet the large lattice mismatch and diverse crystal growth habits between components have often arisen as a big challenge to this goal. Here, anisotropically epitaxial p-n heterostructures with 19.8% lattice mismatch are obtained via a dynamics-mediated seeded growth tactic under reaction temperature as low as 60 °C.

View Article and Find Full Text PDF

Lattice Strain-Modulated Trifunctional CoMoO Polymorph-Based Electrodes for Asymmetric Supercapacitors and Self-Powered Water Splitting.

Small

January 2025

Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China.

Developing efficient, multifunctional electrodes for energy storage and conversion devices is crucial. Herein, lattice strains are reported in the β-phase polymorph of CoMoO within CoMoO@CoO heterostructure via phosphorus doping (P-CoMoO@CoO) and used as a high-performance trifunctional electrode for supercapacitors (SCs), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER) in alkaline electrolytes. A tensile strain of +2.

View Article and Find Full Text PDF

Ruthenium (Ru)-based electrocatalysts have shown promise for anion exchange membrane water electrolysis (AEMWE) due to their ability to facilitate water dissociation in the hydrogen evolution reaction (HER). However, their performance is limited by strong hydrogen binding, which hinders hydrogen desorption and water re-adsorption. This study reports the development of RuNi nanoalloys supported on MoO, which optimize the hydrogen binding strength at Ru sites through modulation by adjacent Ni atoms.

View Article and Find Full Text PDF

Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!