The genotoxic evaluation (in vitro analysis) of a series of eight inorganic tin(II) and tin(IV) compounds [tin(II) acetate, tin(II) chloride, tin(II) ethylhexanoate, tin(II) oxalate, tin(II) oxide, tin(IV) acetate, tin(IV) chloride and tin(IV) oxide], for the detection of micronuclei in human blood lymphocytes, was performed in the absence of metabolic activation by the cytokinesis-block micronucleus assay. Human lymphocytes were treated for over one cell cycle (31 hours), with concentrations ranging from 1 to 75 μM (1, 5, 10, 20, 50 and 75 μM), of tin(II) and tin(IV) salts dissolved in dimethyl sulfoxide. The above-listed concentrations cover the values that have been detected in humans with no occupational exposure to tin compounds. The experimental results show the absence of genotoxicity for all inorganic compounds tested in the specific concentrations and experimental conditions. Cytotoxic effects of tin(II) and tin(IV) compounds were evaluated by the determination of cytokinesis block proliferation index and cytotoxicity percentage. Our observations on the cytotoxicity pattern of the tested tin(II) and tin(IV) compounds indicate that they are cytotoxic in several tested concentrations to human lymphocytes treated in vitro. The observed differences in cytotoxicity of each tested compound might reflect differences in their chemical structure.

Download full-text PDF

Source
http://dx.doi.org/10.3109/01480545.2013.838773DOI Listing

Publication Analysis

Top Keywords

tinii tiniv
16
human lymphocytes
12
tiniv compounds
12
tin compounds
8
micronuclei human
8
absence metabolic
8
metabolic activation
8
tinii
8
lymphocytes treated
8
tiniv
7

Similar Publications

The ring-opening polymerization (ROP) of l-lactide (l-LA) is the main method for synthesizing poly(l-lactide) (PLLA), in which choosing the catalyst is one of the most important parameters. In this work, we focused on the systematic study of catalysts based on p-block elements from period 5, such as indium(iii), tin(ii), tin(iv) and antimony(iii) acetates, which displayed contrasting performances influenced by the oxidation state of the metal center. Analysis of the obtained oligomers by different techniques, including nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), polarized optical microscopy (POM) and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), revealed the selectivity of each catalyst toward the ROP of l-LA.

View Article and Find Full Text PDF

Barium phosphate glasses were prepared with 0.5 mol% TbO added alongside SnO up to 5 mol% with the purpose of evaluating the resulting terbium and tin oxidation states and their impact on glass structural, thermal, and luminescent properties. Following material synthesis by melt-quenching, the composition-structure-property investigation was pursued encompassing measurements by X-ray diffraction (XRD), X-ray absorption near-edge spectroscopy (XANES), Raman spectroscopy, differential scanning calorimetry (DSC), dilatometry, and photoluminescence (PL) spectroscopy.

View Article and Find Full Text PDF

Periodic Acid Modification of Chemical-Bath Deposited SnO Electron Transport Layers for Perovskite Solar Cells and Mini Modules.

Adv Sci (Weinh)

July 2023

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.

Chemical bath deposition (CBD) has been demonstrated as a remarkable technology to fabricate high-quality SnO electron transport layer (ETL) for large-area perovskite solar cells (PSCs). However, surface defects always exist on the SnO film coated by the CBD process, impairing the devices' performance. Here, a facile periodic acid post-treatment (PAPT) method is developed to modify the SnO layer.

View Article and Find Full Text PDF

Metal complexes displaying antiplatelet properties is a promising research area. In our methodology, Platelet-Activating Factor (PAF), the most potent lipid pro-inflammatory mediator, serves as a biological probe. The antiplatelet activity is exerted by the inhibition of the PAF-induced aggregation in washed rabbit platelets (WRPs) and in rabbit plasma rich in platelets (rPRPs).

View Article and Find Full Text PDF

The composition and atomic and electronic structure of a silicon nanowire (SiNW) array coated with tin oxide are studied at the spectromicroscopic level. SiNWs are covered from top to down with a wide bandgap tin oxide layer using a metal-organic chemical vapor deposition technique. Results obtained via scanning electron microscopy and X-ray diffraction showed that tin-oxide nanocrystals, 20 nm in size, form a continuous and highly developed surface with a complex phase composition responsible for the observed electronic structure transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!