Malaria is one of the deadliest diseases on the planet affecting about 50% of the population worldwide. It is a leading cause of morbidity and mortality in the developing world. Plasmodium falciparum, a tiny parasite is the major cause of malaria and is possibly the most dangerous stow-away in history. Malaria has become a major economic concern to some of the tropical and sub-tropical countries. Though a number of antimalarials have been developed from plants as such or their semi-synthetic analogues, there is again an alarming situation of drug resistance against most of the antimalarial drugs. Plants have been an excellent source of antimalarial compounds. There are several plant leads exhibiting antimalarial activity better than the existing drugs. A systematic evaluation of these plant based leads is the need of the time to develop safe, effective and affordable new antimalarials. The present review is an update of plant based antimalarial agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/09298673113206660291 | DOI Listing |
ACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFObjective: Aim: The aim of the article is to study the therapeutic effect and pharmacological characteristics of using fruits, berries, and nuts in ancient medicine, expanding and deepening knowledge in the history of medicine.
Patients And Methods: Materials and Methods: The study material was Medicinae ex oleribus et pomis, the work of Quintus Gargilius Martialis, a third-century Roman writer, a systematizer of rules for cultivating and medical application of over 60 types of vegetables and fruits. The methodological basis of the research is a set of general scientific and special research methods, including analysis and synthesis, induction and deduction, historical, interdisciplinary, descriptive methods, and the method of contextual analysis.
Adv Sci (Weinh)
January 2025
College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China.
Hispidin (1) is a polyphenolic compound with a wide range of pharmacological activities that is distributed in both plants and fungi. In addition to natural extraction, hispidin can be obtained by chemical or enzymatic synthesis. In this study, the identification and characterization of an undescribed enzyme, PheG, from Phellinus igniarius (P.
View Article and Find Full Text PDFPlant Dis
January 2025
LSU AgCenter, Plant Pathology and Crop Physiology, Baton Rouge, Louisiana, United States.
In July 2023, panicle and leaf blight-like symptoms were observed from the rice () variety, PVL03, in research field plots in Louisiana (Rayne, LA 70578, USA; 30.21330⁰ N, 92.37309⁰ W).
View Article and Find Full Text PDFPlant Dis
January 2025
Kashi, Xinjiang, China, China;
Fig (Ficus carica L.) holds economic significance in Atushi, Xinjiang, but as fig cultivation expands, disease prevalence has risen. In July 2024, approximately 22% of harvested fig (cv.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!