Plants: Emerging as Nanofactories towards Facile Route in Synthesis of Nanoparticles.

Bioimpacts

Herbal Drug Technological Laboratory, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570 006 Karnataka, India.

Published: August 2015

Plant mediated nanoparticles' synthesis has led to a remarkable progress via unfolding a green synthesis protocol towards nanoparticles' synthesis. It seems to have drawn quite an unequivocal attention with a view of reformulating the novel strategies as alternatives for popular conventional methods. Hence, the present review summarizes the literature reported thus far and envisions towards plants as emerging sources of nanofactories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786792PMC
http://dx.doi.org/10.5681/bi.2013.012DOI Listing

Publication Analysis

Top Keywords

plants emerging
8
nanoparticles' synthesis
8
emerging nanofactories
4
nanofactories facile
4
facile route
4
synthesis
4
route synthesis
4
synthesis nanoparticles
4
nanoparticles plant
4
plant mediated
4

Similar Publications

Mycotoxin exposure from contaminated food is a significant global health issue, particularly among vulnerable children. Given limited data on mycotoxin exposure among Namibian children, this study investigated mycotoxin types and levels in foods, evaluated dietary mycotoxin exposure from processed cereal foods in children under age five from rural households in Oshana region, Namibia. Mycotoxins in cereal-based food samples (n = 162) (mahangu flour (n = 35), sorghum flour (n = 13), mahangu thin/thick porridge (n = 54), oshikundu (n = 56), and omungome (n = 4)) were determined by liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Epigenetics in the modern era of crop improvements.

Sci China Life Sci

January 2025

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.

Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits.

View Article and Find Full Text PDF

Medicinal plants for the management of post-COVID-19 fatigue: A literature review on the role and mechanisms.

J Tradit Complement Med

January 2025

School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.

Background: COVID-19 infection has a lasting impact on human health, which is known as post-COVID-19 conditions. Fatigue is one of the most commonly reported post-COVID-19 conditions. Management of fatigue in the post-COVID-19 era is necessary and emerging.

View Article and Find Full Text PDF

Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold.

iScience

January 2025

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.

This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.

View Article and Find Full Text PDF

Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!