Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791582 | PMC |
http://dx.doi.org/10.1155/2013/629495 | DOI Listing |
Materials (Basel)
January 2025
Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan.
Nano-fibrillated bacterial cellulose (NFBC) has very long fibers (>17 μm) with diameters of approximately 20 nm. Hence, they have a very high aspect ratio and surface area. The high specific surface area of NFBC can potentially be utilized as an adsorbent.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China.
Heavy metal and nitrogen contaminations are serious concerns in aquatic environments. Marichromatium gracile YL28, a marine purple sulfur bacterium, has shown great potential as a bioremediation agent for removing inorganic nitrogen from marine water. This study further investigated its ability to simultaneously absorb heavy metals, including Pb(II), Cu(II), Cd(II) and Cr(VI), and remove inorganic nitrogen.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2024
School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
Chemosphere
November 2024
Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela- 769 008, Odisha, India. Electronic address:
A multifaceted experimental design, including factorial design, Face-centered composite design (FCCD), and mixture design, was implemented to explore competitive interaction and adsorption behavior of chromium [Cr(VI)], lead [Pb(II)], and cadmium [Cd(II)] by the immobilized extracellular polymer (EPS) based biosorbent of Pseudomonas aeruginosa OMCS-1, in single and ternary metal solution. The prepared biosorbent preferentially adsorbed Cr (47.6 mg/g), Pb (46.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
The Schiff base chelating ligands; (E)-2-(3,3-dimethoxy-2-oxa-7,10-diaza-3-silaundec-10-en-11-yl)phenol (L1), (E)-N-(2-((pyridine-2ylmethylene)amino)ethyl)-3-(trimethoxysilyl)propan-1-amine (L2) and (E)-N-(2-((thiophen-2-ylmethylene)amino)ethyl)-3-(trimethoxysilyl)propan-1-amine (L3) were immobilized on FeO magnetic nanoparticles (MNPs) and utilized in the extraction of Cr(VI), Cd(II) and Pb(II) metal cations from aqueous solutions. The compounds synthesized, denoted as L1@ FeO, L2@FeO, and L3@FeO, were characterized using FT-IR spectroscopy, TEM-SEM, VSM, and BET/BHJ techniques for analysis of functional groups, surface morphology, magnetic properties, and degree of porosity of the adsorbents, respectively. BET/BHJ technique confirmed the mesoporous nature of the compounds as their pore diameters ranged between 15 and 17 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!