This paper describes the application of nanoparticle bombardment with time-of-flight secondary ion mass spectrometry (NP-ToF-SIMS) for the analysis of native biological surfaces for the case of sagittal sections of mammalian brain tissue. The use of high energy, single nanoparticle impacts (e.g. 520 keV Au) permits desorption of intact lipid molecular ions, with enhanced molecular ion yield and reduced fragmentation. When coupled with complementary molecular ion fragmentation and exact mass measurement analysis, high energy nanoparticle probes (e.g. 520 keV Au NP) provide a powerful tool for the analysis of the lipid components from native brain sections without the need for surface preparation and with ultimate spatial resolution limited to the desorption volume per impact (~10 nm).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808454 | PMC |
http://dx.doi.org/10.1002/sia.4901 | DOI Listing |
EJNMMI Phys
January 2025
Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden.
Background: System calibration is essential for accurate SPECT/CT dosimetry. However, count losses due to dead time and pulse pileup may cause calibration errors, in particular for I, where high count rates may be encountered. Calibration at low count rates should also be avoided to minimise detrimental effects from e.
View Article and Find Full Text PDFJ Adolesc Health
January 2025
Social and Behavioral Sciences, School of Public Health, West Virginia University, Morgantown, West Virginia.
Purpose: Recent research suggests that caffeine use may promote a range of adjustment difficulties among adolescents, particularly during the middle school years. The effects of caffeine are particularly concerning given the increased use of high-dosage caffeine products, such as energy drinks, among youth. We investigated the influence of caffeine use on trajectories of conduct problems among early adolescents.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha, 61421, KSA, Saudi Arabia.
In wind energy generation systems, ensuring high energy quality is critical but is often compromised due to the limited performance and durability of conventional regulators. To address this, this work presents a novel controller for managing the machine-side inverter of a single-rotor large wind turbine system using an induction machine-type generator. The proposed controller is designed using proportional, integral, and derivative error-based mechanisms, which fundamentally differ from traditional proportional-integral (PI) regulators.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!