NEDD4-like ubiquitin ligase 2 (NEDL2) is a HECT type ubiquitin ligase. NEDL2 enhances p73 transcriptional activity and degrades ATR kinase in lamin misexpressed cells. Compared with the important functions of other HECT type ubiquitin ligase, there is less study concerning the function and regulation of NEDL2. Using primary antibody immunoprecipitation and mass spectrometry, we identify a list of potential proteins that are putative NEDL2-interacting proteins. The candidate list contains many of mitotic proteins, especially including several subunits of anaphase-promoting complex/cyclosome (APC/C) and Cdh1, an activator of APC/C. Cdh1 can interact with NEDL2 in vivo and in vitro. Cdh1 recognizes one of the NEDL2 destruction boxes (R(740)GSL(743)) and targets it for degradation in an APC/C-dependent manner during mitotic exit. Overexpression of Cdh1 reduces the protein level of NEDL2, whereas knockdown of Cdh1 increases the protein level of NEDL2 but has no effect on the NEDL2 mRNA level. NEDL2 associates with mitotic spindles, and its protein level reaches a maximum in mitosis. The function of NEDL2 during mitosis is essential because NEDL2 depletion prolongs metaphase, and overexpression of NEDL2 induces chromosomal lagging. Elevated expression of NEDL2 protein and mRNA are both found in colon cancer and cervix cancer. We conclude that NEDL2 is a novel substrate of APC/C-Cdh1 as cells exit mitosis and functions as a regulator of the metaphase to anaphase transition. Its overexpression may contribute to tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861616 | PMC |
http://dx.doi.org/10.1074/jbc.M113.472076 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
HHMI, The University of Texas at Austin, Austin, TX 78712.
Dynamic control of signaling events requires swift regulation of receptors at an active state. By focusing on the Arabidopsis ERECTA (ER) receptor kinase, which perceives peptide ligands to control multiple developmental processes, we report a mechanism preventing inappropriate receptor activity. The ER C-terminal tail (ER_CT) functions as an autoinhibitory domain: Its removal confers higher kinase activity and hyperactivity during inflorescence and stomatal development.
View Article and Find Full Text PDFImmunotherapy has elicited significant improvements in outcomes for patients with several tumor types. However, the immunosuppressive microenvironment in glioblastoma restricts the therapeutic efficacy of immune checkpoint blockade (ICB). In this study, we investigated which components of the immune microenvironment contribute to ICB failure in glioblastoma to elucidate the underlying causes of immunotherapeutic resistance.
View Article and Find Full Text PDFProtein Sci
February 2025
Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.
PADI4 is one of the human isoforms of a family of enzymes involved in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase that is critical for degradation of the tumor suppressor gene p53. We have previously shown that there is an interaction between MDM2 and PADI4 in cellulo, and that such interaction occurs through the N-terminal region of MDM2, N-MDM2, and in particular through residues Thr26, Val28, Phe91, and Lys98.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA.
Introduction: Mitochondrial dysfunction stands as a pivotal feature in neurodegenerative disorders, spurring the quest for targeted therapeutic interventions. This review examines Ubiquitin-Specific Protease 30 (USP30) as a master regulator of mitophagy with therapeutic promise in Alzheimer's disease (AD) and Parkinson's disease (PD). USP30's orchestration of mitophagy pathways, encompassing PINK1-dependent and PINK1-independent mechanisms, forms the crux of this exploration.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
Enzymes play a pivotal role in orchestrating complex cellular responses to external stimuli and environmental changes through signal transduction pathways. Despite their crucial roles, measuring enzyme activities is typically indirect and performed on a smaller scale, unlike protein abundance measured by high-throughput proteomics. Moreover, it is challenging to derive the activity of enzymes from proteome-wide post-translational modification (PTM) profiling data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!