Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and chronic bronchitis and is a leading cause of morbidity and mortality worldwide. Tobacco smoke and deficiency in α1-antitrypsin (AAT) are the most prominent environmental and genetic risk factors, respectively. Yet the pathogenesis of COPD is not completely elucidated. Disease progression appears to include a vicious circle driven by self-perpetuating lung inflammation, endothelial and epithelial cell death, and proteolytic degradation of extracellular matrix proteins. Like AAT, serpinB1 is a potent inhibitor of serine proteases including neutrophil elastase and cathepsin G. Because serpinB1 is expressed in myeloid and lung epithelial cells and is protective during lung infections, we investigated the role of serpinB1 in preventing age-related and cigarette smoke-induced emphysema in mice. Fifteen-month-old mice showed increased lung volume and decreased pulmonary function compared with young adult mice (3 mo old), but no differences were observed between serpinB1-deficient (KO) and wild-type (WT) mice. Chronic exposure to secondhand cigarette smoke resulted in structural emphysematous changes compared with respective control mice, but no difference in lung morphometry was observed between genotypes. Of note, the different pattern of stereological changes induced by age and cigarette smoke suggest distinct mechanisms leading to increased airway volume. Finally, expression of intracellular and extracellular protease inhibitors were differently regulated in lungs of WT and KO mice following smoke exposure; however, activity of proteases was not significantly altered. In conclusion, we showed that, although AAT and serpinB1 are similarly potent inhibitors of neutrophil proteases, serpinB1 deficiency is not associated with more severe emphysema.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00181.2013 | DOI Listing |
Nat Commun
February 2023
Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Although extracellular DNA is known to form immune complexes (ICs) with autoantibodies in systemic lupus erythematosus (SLE), the mechanisms leading to the release of DNA from cells remain poorly characterized. Here, we show that the pore-forming protein, gasdermin D (GSDMD), is required for nuclear DNA and mitochondrial DNA (mtDNA) release from neutrophils and lytic cell death following ex vivo stimulation with serum from patients with SLE and IFN-γ. Mechanistically, the activation of FcγR downregulated Serpinb1 following ex vivo stimulation with serum from patients with SLE, leading to spontaneous activation of both caspase-1/caspase-11 and cleavage of GSDMD into GSDMD-N.
View Article and Find Full Text PDFInt Immunopharmacol
April 2021
Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Previously we reported that IL-17-producing CD4 T cells (Th17) were increased in mice lacking the protease inhibitor SerpinB1 and several SerpinB1-inhibitable cysteine cathepsins were induced in the Th17 cells, most prominently cathepsin L (CtsL). Since CtsL also mediates invariant chain processing in thymic epithelial cells, deficiency of CtsL leads to impaired CD4 T cell thymic selection, which hinders the direct investigation of CD4 T cells in CtsL mouse. In the current study, through transplanting the CtsL bone marrow into lethally irradiated CtsL-sufficient Rag mice (bone marrow chimeras), we reconstituted the immune system of CtsL chimeric mice, which possessed normal CD4 T cell development and allowed us to study the intrinsic role of CtsL in CD4 T cells in Th17 cell-driven autoimmune diseases.
View Article and Find Full Text PDFFront Immunol
May 2021
Institute of Virology and Immunology, Mittelhäusern, Switzerland.
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes. They quickly respond to antigenic stimulation by producing copious amounts of cytokines and chemokines. iNKT precursors differentiate into three subsets iNKT1, iNKT2, and iNKT17 with specific cytokine production signatures.
View Article and Find Full Text PDFJ Mol Med (Berl)
May 2019
Inserm UMR1170, Gustave Roussy Cancer Center, F-94800, Villejuif, France.
Cohen syndrome (CS) is a rare genetic disorder due to mutations in VPS13B gene. Among various clinical and biological features, CS patients suffer from inconsistent neutropenia, which is associated with recurrent but minor infections. We demonstrate here that this neutropenia results from an exaggerate rate of neutrophil apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!