The role of visual analytics in asthma phenotyping and biomarker discovery.

Adv Exp Med Biol

Institute for Translational Sciences, University of Texas Medical Branch, 6.168 Research Building 6, 301 University Blvd, Galveston, TX, USA,

Published: May 2014

The exponential growth of biomedical data related to diseases such as asthma far exceeds our cognitive abilities to comprehend it for tasks such as biomarker discovery, pathway identification, and molecular-based phenotyping. This chapter discusses the cognitive and task-based reasons for why methods from visual analytics can help in analyzing such large and complex asthma data, and demonstrates how one such approach called network visualization and analysis can be used to reveal important translational insights related to asthma. The demonstration of the method helps to identify the strengths and limitations of network analysis, in addition to areas for future research that can enhance the use of networks to analyze vast and complex biomedical datasets related to diseases such as asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4614-8603-9_18DOI Listing

Publication Analysis

Top Keywords

visual analytics
8
biomarker discovery
8
diseases asthma
8
asthma
5
role visual
4
analytics asthma
4
asthma phenotyping
4
phenotyping biomarker
4
discovery exponential
4
exponential growth
4

Similar Publications

To decrease the number of chronic kidney disease (CKD), early diagnosis of diabetic kidney disease is required. We performed invariant information clustering (IIC)-based clustering on glomerular images obtained from nephrectomized kidneys of patients with and without diabetes. We also used visualizing techniques (gradient-weighted class activation mapping (Grad-CAM) and generative adversarial networks (GAN)) to identify the novel and early pathological changes on light microscopy in diabetic nephropathy.

View Article and Find Full Text PDF

Dual Ratiometric Fluorescence Sensors Based on Chiral Carbon Dots for the Sensitive and Specific Detection of Arginine.

Anal Chem

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.

Arginine (Arg) is involved in tissue metabolism and regulates the immune function; thereby, achieving the detection of Arg is crucial for early diagnosis and treatment of diseases. Herein, dual ratiometric fluorescence sensors were prepared with the blue emission of levorotatory/dextrorotatory carbon dots (CDs) and the red emission of porphyrin (L/D-CDs-PP) for the sensitive and portable detection of Arg. Interestingly, L-CDs-PP and D-CDs-PP displayed not only the dual emission peaks at 493 and 650 nm but also different response modes to Arg; thus, they could serve as dual ratiometric fluorescence sensors to achieve the accurate and reliable detection of Arg, with the detection limit of 23.

View Article and Find Full Text PDF

Purpose: To validate the performance of the Notal OCT Analyzer (NOA) in processing self-administered OCT images from an OCT system designed for home use (home OCT [HOCT]) as part of a pivotal study aimed at achieving de novo United States Food and Drug Admininstration marketing authorization.

Design: A prospective quantitative cross-sectional artificial intelligence study.

Participants: The study enrolled adults aged ≥55 years diagnosed with neovascular age-related macular degeneration (nAMD) in ≥1 eligible eye with a best-corrected visual acuity of 20/320 or better.

View Article and Find Full Text PDF

Introduction: Angelica sinensis is one of the most popular traditional Chinese medicines (TCM) and has been extensively used to treat various diseases. Hundreds of endogenous ingredients have been isolated and identified from this herb, but their spatial distribution within the plant root is largely unknown.

Objectives: In this study, we tried to investigate and map within-tissue spatial distribution of metabolites in Angelica sinensis roots.

View Article and Find Full Text PDF

The snub-nosed, reclining, and serene image of the fetus is commonplace in cultural representations and analyses of obstetric ultrasound. Yet following the provocation of various feminist scholars, taking the fetal sonogram as the automatic object of concern vis-à-vis ultrasound cedes ground to anti-abortionists, who deploy fetal images to argue that life begins at conception and that the unborn are rights bearing subjects who must be protected. How might feminists escape this analytical trap, where discussions of ultrasonics must always be engaged in the act of debunking? This article orients away from the problem of fetal representation by employing a method which may appear to be wildly unsuitable: media archaeology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!