An α-chloro lithium base stabilised by a sulfonyl and thiophosphinoyl moiety was selectively prepared by lithiation of its protonated precursor and oxidation of the corresponding dilithio methandiide. The carbenoid-like compound was found to be remarkably stable even at room temperature and thus allowed for its spectroscopic characterisation in solution and in the solid state. Its ambiphilic nature was tested and compared with typical carbenoids both experimentally and by computational methods. The electronic stabilisation results in its thermal stability but considerably reduces the ambiphilic character limiting the reactivity patterns generally observed for lithium carbenoids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3dt52800f | DOI Listing |
Radiat Res
January 2025
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina.
Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage due to their high energy density, cost-effectiveness, and environmental friendliness. However, their commercialization is hindered by challenges, such as the polysulfide shuttle effect, lithium dendrite growth, and low electrical conductivity of sulfur cathodes. Cellulose, a natural, renewable, and versatile biopolymer, has emerged as a multifunctional material to address these issues.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Lithium-ion batteries represent a significant component of the field of energy storage, with a diverse range of applications in consumer electronics, portable devices, and numerous other fields. In view of the growing concerns about the safety of batteries, it is of the utmost importance to develop a sensor that is capable of accurately monitoring the internal temperature of lithium-ion batteries. External sensors are subject to the necessity for additional space and ancillary equipment.
View Article and Find Full Text PDFMolecules
January 2025
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.
The main component of high-capacity silicon-based electrodes is silicon powder, which necessitates intricate processing to minimize volume growth and powder separation while guaranteeing the ideal Si content. This work uses the an situ high-pressure forming approach to create an MXene/-Si/MXene composite electrode, where MXene refers to TiCT, and -Si denotes two-phase mixed nano-Si particles. The sandwich shape promotes silicon's volume growth and stops active particles from spreading.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!