Using conventional materials, the resolution of focusing and imaging devices is limited by diffraction to about half the wavelength of light, as high spatial frequencies do not propagate in isotropic materials. Wire array metamaterials, because of their extreme anisotropy, can beat this limit; however, focusing with these has only been demonstrated up to microwave frequencies and using propagation over a few wavelengths only. Here we show that the principle can be scaled to frequencies orders of magnitudes higher and to considerably longer propagation lengths. We demonstrate imaging through straight and tapered wire arrays operating in the terahertz spectrum, with unprecedented propagation of near field information over hundreds of wavelengths and focusing down to 1/28 of the wavelength with a net increase in power density. Applications could include in vivo terahertz-endoscopes with resolution compatible with imaging individual cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826642PMC
http://dx.doi.org/10.1038/ncomms3706DOI Listing

Publication Analysis

Top Keywords

metamaterial fibres
4
fibres subdiffraction
4
imaging
4
subdiffraction imaging
4
focusing
4
imaging focusing
4
focusing terahertz
4
frequencies
4
terahertz frequencies
4
frequencies optically
4

Similar Publications

The escalating global demand for meat products has intensified ecological concerns, underscoring the need for sustainable meat alternatives. Although current methods effectively imitate ground meat, mimicking whole cuts, which constitute 54% of the global market, remains challenging due to the lack of scalable technology. Injection molding is a massively scalable manufacturing technology developed for the polymer industry.

View Article and Find Full Text PDF

Hyperbolic-Metamaterial-Based Optical Fiber SPR Sensor Enhanced by a Smart Hydrogel for Perspiration pH Measurements.

Nano Lett

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou 510632, P. R. China.

Article Synopsis
  • An optical fiber SPR sensor has been developed using hyperbolic metamaterials and pH-sensitive hydrogels to detect pH levels in sweat.
  • The sensor boasts high refractive index sensitivity (6963.64 nm RIU) and pH sensitivity, particularly in the ranges of 2.7-4.7 and 4.7-7.5.
  • It shows excellent pH selectivity over other sweat constituents like urea and glucose, along with strong operational stability, making it promising for health monitoring and medical applications.
View Article and Find Full Text PDF

3D-bioprinting is a promising technique to mimic the complex anatomy of natural tissues, as it comprises a precise and gentle way of placing bioinks containing cells and hydrogel. Although hydrogels expose an ideal growth environment due to their extracellular matrix (ECM)-like properties, high water amount and tissue like microstructure, they lack mechanical strength and possess a diffusion limit of a couple of hundred micrometers. Integration of electrospun fibers could hereby benefit in multiple ways, for instance by controlling mechanical characteristics, cell orientation, direction of diffusion and anisotropic swelling behavior.

View Article and Find Full Text PDF

Direct electronical readout of surface plasmon resonance biosensor enabled by on-fiber Graphene/PMMA photodetector.

Biosens Bioelectron

March 2025

Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, 510632, PR China; Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, PR China. Electronic address:

Surface plasmon resonance (SPR) optical fiber sensors are appealing for biomolecular detection due to their inherent characteristics such as flexibility, real-time performance, and high sensitivity. Concurrently, incorporating SPR sensors into wearable devices has emerged as a significant strategy. However, the majority of traditional SPR optical fiber sensors utilize spectrometers for optical readout, which leads to a relatively bulky overall size of the sensing system.

View Article and Find Full Text PDF

MXene, a promising photothermal nanomaterial, faces challenges due to densely stacked nanosheets with high refractive index (RI). To maximize photothermal performance, MXene metamaterials (m-MXenes) are developed with a superlattice with alternating MXene and organic layers, reducing RI and inducing multiple light reflections. This approach increases light absorption, inducing 90% photothermal conversion efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!