Vertical multi-layer graphenes (MLGs) have been synthesized without a catalyst on planar and nano-structured substrates by using microwave plasma enhanced chemical vapor deposition. The growth of MLGs on non-carbon substrates is quite different from that on carbon-based substrates. It starts with a pre-deposition of a carbon buffer layer to achieve a homo-epitaxial growth. The nucleation and growth of MLGs was found to be strongly influenced by the surface geometry and topography of substrates. Planar substrates suitable for atom diffusion are favorable for growing large-scale MLGs, and defect-rich substrates are beneficial for quick MLG nucleation and thus the growth of densely distributed MLGs. The field emission properties of MLGs grown on planar and nano-structured substrates were studied and are found to be strongly dependent on the nature of substrates. Substrates having good conductivity and large aspect ratios such as carbon nanotubes (CNTs) have good field emission properties. The best field emission properties of MLG/CNT composites with optimal shapes were observed with a low turn-on electric field of 0.93 V μm(-1), a threshold field of 1.56 V μm(-1), a maximum emission current density of 60.72 mA cm(-2), and excellent stability.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr04145jDOI Listing

Publication Analysis

Top Keywords

field emission
16
emission properties
16
planar nano-structured
12
nano-structured substrates
12
substrates
10
growth mlgs
8
nucleation growth
8
field
6
mlgs
6
emission
5

Similar Publications

Significant Impact of a Daytime Halogen Oxidant on Coastal Air Quality.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.

Chlorine radicals (Cl) are highly reactive and affect the fate of air pollutants. Several field studies in China have revealed elevated levels of daytime molecular chlorine (Cl), which, upon photolysis, release substantial amounts of Cl but are poorly represented in current chemical transport models. Here, we implemented a parametrization for the formation of daytime Cl through the photodissociation of particulate nitrate in acidic environments into a regional model and assessed its impact on coastal air quality during autumn in South China.

View Article and Find Full Text PDF

A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in non-homogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN).

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate and compare the antibacterial properties and optical characteristics of clear orthodontic aligners coated with zinc oxide (ZnO) and magnesium oxide (MgO) nanoparticles.

Materials And Methods: In this experimental laboratory study, polyethylene terephthalate glycol (PETG) aligner samples were coated with nanoparticles of ZnO, MgO and a combination of both (ZnO + MgO). The surface coatings were analysed before and after stability testing using field emission scanning electron microscopy (FESEM).

View Article and Find Full Text PDF

Background: Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators.

View Article and Find Full Text PDF

We compare the optical properties of four diode samples differing by built-in field direction and width of the InGaN quantum well in the active layer: two diodes with standard layer sequences and 2.6 and 15 nm well widths and two diodes with inverted layer ordering (due to the tunnel junction grown before the structure) also with 2.6 and 15 nm widths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!