Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, EuL2.5⋅L'·(ClO4)2⋅5H2O, has been synthesized [using L as the first ligand, and benzoic acid L' as the second ligand], and characterized by elemental analysis, molar conductivity, coordination titration analysis, FTIR, TG-DSC, (1)H NMR and UV-vis. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary complex EuL2.5·(ClO4)3·3H2O has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu(3+) ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. After introducing the second ligand L', the fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex. This illustrated that the presence of both the first ligand L and the second ligand L' could sensitize fluorescence intensities of Eu (III) ions. The fluorescence spectra, fluorescence lifetime and phosphorescence spectra were also discussed. To explore the potential biological value of Eu (III) complexes, the binding interaction among Eu (III) complexes and bovine serum albumin (BSA) was studied by fluorescence spectrum. The result indicated that the reaction between Eu (III) complexes and BSA was a static quenching procedure. The binding site number, n, of 0.60 and 0.78, and binding constant, Ka, of 0.499 and 4.46 were calculated according to the double logarithm regression equation, respectively for EuL2.5⋅L'⋅(ClO4)2⋅5H2O and EuL2.5⋅(ClO4)3⋅3H2O systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2013.09.135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!