Metabolic stability of superoxide adducts derived from newly developed cyclic nitrone spin traps.

Free Radic Biol Med

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (UMR CNRS 8601), Université Paris Descartes, 75006 Paris, France; IUFM de Paris, Université Paris Sorbonne, 75016 Paris, France. Electronic address:

Published: February 2014

AI Article Synopsis

Article Abstract

Reactive oxygen species are by-products of aerobic metabolism involved in the onset and evolution of various pathological conditions. Among them, the superoxide radical is of special interest as the origin of several damaging species such as H2O2, hydroxyl radical, or peroxynitrite (ONOO(-)). Spin trapping coupled with ESR is a method of choice to characterize these species in chemical and biological systems and the metabolic stability of the spin adducts derived from reaction of superoxide and hydroxyl radicals with nitrones is the main limit to the in vivo application of the method. Recently, new cyclic nitrones bearing a triphenylphosphonium or permethylated β-cyclodextrin moiety have been synthesized and their spin adducts demonstrated increased stability in buffer. In this article, we studied the stability of the superoxide adducts of four new cyclic nitrones in the presence of liver subcellular fractions and biologically relevant reductants using an original setup combining a stopped-flow device and an ESR spectrometer. The kinetics of disappearance of the spin adducts were analyzed using an appropriate simulation program. Our results highlight the interest of the new spin trapping agents CD-DEPMPO and CD-DIPPMPO for specific detection of superoxide with high stability of the superoxide adducts in the presence of liver microsomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2013.10.812DOI Listing

Publication Analysis

Top Keywords

stability superoxide
12
superoxide adducts
12
spin adducts
12
metabolic stability
8
adducts derived
8
spin trapping
8
cyclic nitrones
8
presence liver
8
superoxide
6
adducts
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!