Air-liquid interface (ALI) exposures enable in vitro testing of mixtures of gases and particles such as diesel exhaust (DE). The main objective of this study was to investigate the feasibility of exposing human lung epithelial cells at the ALI to complete DE generated by a heavy-duty truck in the state-of-the-art TNO powertrain test center. A549 cells were exposed at the air-liquid interface to DE generated by a heavy-duty Euro III truck for 1.5h. The truck was tested at a speed of ∼70kmh(-1) to simulate free-flowing traffic on a motorway. Twenty-four hours after exposure, cells were analyzed for markers of oxidative stress (GSH and HO-1), cytotoxicity (LDH and Alamar Blue assay) and inflammation (IL-8). DE exposure resulted in an increased oxidative stress response (significantly increased HO-1 levels and significantly reduced GSH/GSSH ratio), and a decreased cell viability (significantly decreased Alamar Blue levels and slightly increased LDH levels). However, the pro-inflammatory response seemed to decrease (decrease in IL-8). The results presented here demonstrate that we are able to successfully expose A549 cells at ALI to complete DE generated by a heavy-duty truck in TNO's powertrain test center and show oxidative stress and cytotoxicity responses due to DE exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2013.10.007 | DOI Listing |
Environ Res
January 2025
Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany.
Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure.
View Article and Find Full Text PDFPLoS One
December 2024
Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, Republic of Korea.
Th2 inflammation and epithelial-mesenchymal transition (EMT) play crucial roles in the pathophysiology of chronic rhinosinusitis with nasal polyps (CRSwNP). This study aimed to investigate the hypothesis that MMP-12, produced by M2 macrophages, induces EMT in nasal epithelial cells, thereby contributing to airway inflammation and remodeling in CRSwNP. The expression levels of MMP-12 were measured by RT-PCR in CRS nasal mucosa and THP-1 cells.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
December 2024
Infection and Inflammation, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
Purpose: Acinetobacter baumannii (A. baumannii) is an emerging global public health threat owing to its ability to form biofilms. Here, we evaluated 3-hydroxybenzoic acid (3-HBA), a promising organic compound, for its ability to disrupt biofilm formation and virulence attributes in clinical isolates of A.
View Article and Find Full Text PDFSci Rep
December 2024
Rheonova, 1 Allee de Certéze, 38610, Gières, France.
Pulmonary mucus serves as a crucial protective barrier in the respiratory tract, defending against pathogens and contributing to effective clearance mechanisms. In Muco Obstructive Pulmonary Diseases (MOPD), abnormal rheological properties lead to highly viscous mucus, fostering chronic infections and exacerbations. While prior research has linked mucus viscoelasticity to its mucin content, the variability in MOPD patients implies the involvement of other factors.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Pharmacy, Dongguk University, Seoul, Republic of Korea.
Understanding the early interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human airway epithelial cells is essential for unraveling viral replication and spread mechanisms. In this study, we investigated the early dynamics of airway epithelial cells during SARS-CoV-2 infection using well-differentiated human nasal and tracheal epithelial cell cultures by incorporating three publicly available single-cell RNA sequencing datasets. We identified a previously uncharacterized cell population, termed virus-rich intermediate (VRI) cells, representing an intermediate differentiation stage between basal and ciliated cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!