Turning Russian specialized microbial culture collections into resource centers for biotechnology.

Trends Biotechnol

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 13 Golev Street, Perm 614081, Russia; Microbiology and Immunology Department, Perm State National Research University, 15 Bukirev Street, Perm 614990, Russia.

Published: November 2013

Specialized nonmedical microbial culture collections contain unique bioresources that could be useful for biotechnology companies. Cooperation between collections and companies has suffered from shortcomings in infrastructure and legislation, hindering access to holdings. These challenges may be overcome by the transformation of collections into national bioresource centers and integration into international microbial resource networks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibtech.2013.08.002DOI Listing

Publication Analysis

Top Keywords

microbial culture
8
culture collections
8
turning russian
4
russian specialized
4
specialized microbial
4
collections
4
collections resource
4
resource centers
4
centers biotechnology
4
biotechnology specialized
4

Similar Publications

This study aimed at quantifying the potential effects of plant and soil microbial interaction on selenium (Se) volatilization, with the specific objectives of identifying soil bacteria associated with rabbitfoot grass () and demonstrating the enhancement of Se volatilization in the soil-Indian mustard () system through inoculation of the soil with the identified best Se-volatilizing bacterial strain. Soil bacteria were isolated from topsoil and rhizosphere soils of rabbitfoot grass, and the bacterial colonies were characterized via PCR-DGGE and DGGE band analysis prior to their identification using 16S rDNA sequencing technique. produced over 500-fold more volatile Se in a culture medium treated with 15 µg Se/mL (equal mixture of SeO , SeO and selenomethionine) than any of the other eight identified bacterial strains.

View Article and Find Full Text PDF

Effects of Different Types of Microplastics on Cold Seep Microbial Diversity and Function.

Environ Sci Technol

January 2025

Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China.

The massive production and widespread use of plastics have resulted in a growing marine plastic pollution problem. Cold seep ecosystems are maintained by microorganisms related to nitrogen and carbon cycling that occur in deep-sea areas, where cold hydrocarbon-rich water seeps from the ocean floor. Little is known about plastic pollution in this ecosystem.

View Article and Find Full Text PDF

Regional antimicrobial resistance gene flow among the One Health sectors in China.

Microbiome

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.

Background: Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance.

Results: In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples.

View Article and Find Full Text PDF

Background: Stutzerimonas is a recently proposed genus comprising strains formerly classified as Pseudomonas stutzeri. The genus includes at least 16 identified species. Stutzerimonas nitrititolerans, previously known as Pseudomonas nitrititolerans, was initially isolated from a bioreactor.

View Article and Find Full Text PDF

To investigate the bacterial community structure and physicochemical characteristics of different types of Daqu in the Binzhou region, this study employed traditional pure culture methods, high-throughput sequencing technology, and conventional physicochemical assays for analysis. The research results indicate that Enterococcus faecium and Bacillus licheniformis emerged as the main LAB and Bacillus species in Daqu from Binzhou region, respectively. In addition, high-throughput sequencing revealed significant differences in bacterial community structure between the two types of Daqu (P < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!