Background: This study was carried out to determine causative agents of acute respiratory illness of patients in Khartoum State, Sudan.

Methods: Four hundred patients experiencing respiratory infections within January-March 2010 and January-March 2011 were admitted at Khartoum Hospital and had their throat swab samples subjected to multiplex real-time RT-PCR to detect influenza viruses (including subtypes) and other viral agents. Isolation, nucleotide sequence and phylogenetic analysis on some influenza viruses based on the HA gene were done.

Results: Out of 400 patients, 66 were found to have influenza viruses (35, 27, 2, and 2 with types A, B, C, and A and B co-infections, respectively). Influenza viruses were detected in 28, 33 and 5 patients in the age groups <1, 1-10, and 11-30 years old, respectively but none in the 31-50 years old group. Out of 334 patients negative for influenza viruses, 27, 14, and 2 were positive for human respiratory syncytial virus, rhinovirus and adenovirus, respectively. Phylogenetic tree on influenza A (H1N1) pdm09 subtype shows that Sudan strains belong to the same clade and are related to those strains from several countries such as USA, Japan, Italy, United Kingdom, Germany, Russia, Greece, Denmark, Taiwan, Turkey and Kenya. Seasonal A H3 subtypes have close similarity to strains from Singapore, Brazil, Canada, Denmark, USA and Nicaragua. For influenza B, Sudan strains belong to two different clades, and just like influenza A (H1N1) pdm09 and A H3 subtypes, seem to be part of worldwide endemic population (Kenya, USA, Brazil, Russia, Taiwan and Singapore).

Conclusions: In Sudan, the existence of respiratory viruses in patients with acute respiratory infection was confirmed and characterized for the first time by using molecular techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831848PMC
http://dx.doi.org/10.1186/1743-422X-10-312DOI Listing

Publication Analysis

Top Keywords

influenza viruses
16
causative agents
8
agents acute
8
acute respiratory
8
respiratory infections
8
patients
5
survey causative
4
infections patients
4
patients khartoum-state
4
khartoum-state sudan
4

Similar Publications

Background: Infections by and influenza viruses are vaccine-preventable diseases causing great morbidity and mortality. We evaluated pneumococcal and influenza vaccination practices during pre-international travel health consultations.

Methods: We evaluated data on pretravel visits over a 10-year period (1 July 2012 through 31 June 2022) from 31 sites in Global TravEpiNet (GTEN), a consortium of US healthcare facilities providing pretravel health consultations.

View Article and Find Full Text PDF

Influenza surveillance is important for monitoring influenza virus circulation and disease burden to inform influenza prevention and control measures. The aim of this study was to describe the epidemiology and to estimate the incidence of influenza in two communities in West Java, Indonesia, before and after the 2009 H1N1 pandemic. A population-based surveillance study in the community health care setting was conducted to estimate the annual incidence of influenza.

View Article and Find Full Text PDF

G-quadruplex-forming small RNA inhibits coronavirus and influenza A virus replication.

Commun Biol

January 2025

Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.

Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice.

View Article and Find Full Text PDF

Proteolysis-targeting influenza vaccine strains induce broad-spectrum immunity and in vivo protection.

Nat Microbiol

January 2025

State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses.

View Article and Find Full Text PDF

PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins.

Nat Chem Biol

January 2025

State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!