The effects of flavonoids, phloridzin, quercetin, myricetin and biochanin A on the dipole potential of planar lipid bilayers formed from dioleylphosphoethanolamine, dioleylphosphoserine, dioleoylphosphocholine, and diphytanoylphosphocholine are investigated. The characteristic parameters of the Langmuir adsorption isotherm, the maximum changes in the membrane dipole potential at an infinitely large concentration of flavonoid and its dissociation constant, which reflects the affinity of flavonoid to the membrane lipids, are determined. Modifying effects of chalcones, flavonols and isoflavones are compared. The influence of the surface charge of the lipid bilayer and the spontaneous curvature of the membrane-forming phospholipids on the adsorption of flavonoids on the model membranes is discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dipole potential
12
[changes dipole
4
potential phospholipid
4
phospholipid membranes
4
membranes flavonoid
4
flavonoid adsorption]
4
adsorption] effects
4
effects flavonoids
4
flavonoids phloridzin
4
phloridzin quercetin
4

Similar Publications

The spectrum of carbon monoxide is important for astrophysical media, such as planetary atmospheres, interstellar space, exoplanetary and stellar atmospheres; it also important in plasma physics, laser physics and combustion. Interpreting its spectral signature requires a deep and thorough understanding of its absorption and emission properties. A new accurate spectroscopic model for the ground and electronically-excited states of the CO molecule computed at the aug-cc-pV5Z CASSCF/MRCI+Q level is reported.

View Article and Find Full Text PDF

Lithium niobate (LiNbO) has shown great potential for applications in nonlinear metasurfaces, thanks to its large second-order nonlinear coefficients and high integration capabilities. Optical resonances play a crucial role in further enhancing the nonlinear optical responses of LiNbO metasurfaces (LNMS). In this study, both numerically and experimentally, we designed and fabricated a metasurface structure that supports toroidal dipole (TD) resonance to enhance second-harmonic generation (SHG).

View Article and Find Full Text PDF

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

Metallic Electro-optic Effect in Gapped Bilayer Graphene.

Nano Lett

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride.

View Article and Find Full Text PDF

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!