Intramolecular and intermolecular direct (unmediated) electron transfer was studied by means of electrochemical techniques in flavohemoprotein cytochrome P450 BM3 (CYP102A1 from Bacillius megaterium) and between cytochrome b5 and cytochrome c. Flavohemoprotein cytochrome P450 BM3 was immobilized on a screen printed graphite electrode, modified with a biocompatible nanocomposite material based on the didodecyldimethylammonium bromide DDAB and gold nanoparticles. Analytical characterictics of DDAB/Au/P450 BM3 electrodes were studied with cyclic voltammetry and square wave voltammetry. It was shown that intramolecular electron transfer was realized between diflavin (FAD/FMN) and heme domain of CYP102A1. An electron transport chain of flavohemoprotein P450 BM3 immobilized at nanostructued electrode is realized as: electrode --> FAD --> FMN --> heme. Electron transfer occurs inside the protein, and it is an evidence of functional interaction between diflavin and heme domains. The effect of a substrate (lauric acid) or inhibitors (metyrapone or imidazole) binding on the electrochemical parameters of flavohemoprotein P450 BM3 was also studied. Interprotein electron transfer was analyzed between cytochrome b5 and cytochrome c. Electrochemical analysis revealed that electron transfer takes place in protein-protein complexes with participants possessing different redox potentials.

Download full-text PDF

Source

Publication Analysis

Top Keywords

electron transfer
20
p450 bm3
16
interprotein electron
8
flavohemoprotein cytochrome
8
cytochrome p450
8
cytochrome cytochrome
8
bm3 immobilized
8
flavohemoprotein p450
8
electron
7
cytochrome
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!