Reaction of Ti(OiPr)4 with several tri- and tetracarboxylic acids, followed by hydrolysis, resulted in microporous, structured materials, with microporous surface areas up to 340 m(2) g(-1). Depending on the kind of carboxylic acid, the Ti : COOH ratio and the Ti : H2O ratio, either pillared layered or surface fractal 3D structures were obtained according to SAXS measurements. The most pronounced layered structure was found for 1,2,4,5-benzenetetrabenzoic acid and a Ti : H2O ratio of 4, while a Ti : H2O ratio of 2 resulted in a 3D structure. The use of 1,3,5-benzenetricarboxylic acid or 1,3,5-benzenetribenzoic acid resulted in similar structures which, however, were less pronounced and less ordered. The reaction of tetrakis(4-carboxyphenyl)silicon with Ti(OiPr)4 or benzenetribenzoic acid with Zr(OiPr)4 gave 3D structures for all Ti : H2O ratios.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt51285aDOI Listing

Publication Analysis

Top Keywords

h2o ratio
12
ratio h2o
8
acid
5
porous titanium
4
titanium zirconium
4
zirconium oxo
4
oxo carboxylates
4
carboxylates interface
4
interface sol-gel
4
sol-gel metal-organic
4

Similar Publications

In this study, a series of experiments are done to analyze the effect of bluff body geometry on the NO reduction of a natural gas-air stratified swirl burner. The stratified burner of Cambridge University is chosen to study the mentioned geometrical effect, and the geometry modification of bluff body is used as a simple method for NO reduction, which can be easily applied to the systems using these burners, including gas turbines. The bluff body geometrical change to an annular bluff body is inspired by the fact that the areas in which the edge of the bluff body is in contact with the unburned flow have lower temperatures, which can drastically affect combustion parameters, especially emissions.

View Article and Find Full Text PDF

A polysaccharide from Morchella esculenta mycelia: Structural characterization and protective effect on antioxidant stress on PC12 cells against HO-induced oxidative damage.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.

View Article and Find Full Text PDF

Pulsed-Current Operation Enhances HO Production on a Boron-Doped Diamond Mesh Anode in a Zero-Gap PEM Electrolyzer.

ChemSusChem

January 2025

Department of Chemical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The, Netherlands.

A niobium (Nb) mesh electrode was coated with boron-doped diamond (BDD) using chemical vapor deposition in a custom-built hot-filament reactor. The BDD-functionalized mesh was tested in a zero-gap electrolysis configuration and evaluated for the anodic formation of HO by selective oxidation of water, including the analysis of the effects on Faradaic efficiency towards HO (FEH2O2) induced by pulsed electrolysis. A low electrolyte flow rate (V⋅) was found to result in a relatively high concentration of HO in single-pass electrolysis experiments.

View Article and Find Full Text PDF

Doping and surface-modification are well-established strategies for the performance enhancement of bismuth vanadate (BiVO) photoanodes in photoelectrochemical (PEC) water splitting devices. Herein, a "double-use" strategy for the development of high-performance BiVO photoanodes for solar water splitting is reported, where a molecular cobalt-phosphotungstate (CoPOM = Na[Co(HO)(PWO)]) is used both as a bulk doping agent as well as a surface-deposited water oxidation cocatalyst. The use of CoPOM for bulk doping of BiVO is shown to enhance the electrical conductivity and improve the charge separation efficiency, resulting in the enhancement of the maximum applied-bias photoconversion efficiency (ABPE) by a factor of ∼18 to 0.

View Article and Find Full Text PDF

Optimizing low-temperature CO oxidation under realistic combustion conditions: The impact of CeO morphology on Au/CeO catalysts.

J Hazard Mater

January 2025

State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China; Suzhou Key Laboratory for Urban Public Safety, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, PR China. Electronic address:

The development of carbon monoxide oxidation catalysts for complex gas environments faces significant challenges in fire scenarios. Only a few representative gases are used as interfering components in simulated real smoke under laboratory conditions, which cannot accurately reflect the performance of catalysts in a real fire. Herein, Au/CeO catalysts with high activity were prepared by adjusting the morphology (rod, cube, polyhedron and irregular particles) and exposed crystal surface ratio of CeO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!