A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular docking and molecular dynamics study on the effect of ERCC1 deleterious polymorphisms in ERCC1-XPF heterodimer. | LitMetric

Molecular docking and molecular dynamics study on the effect of ERCC1 deleterious polymorphisms in ERCC1-XPF heterodimer.

Appl Biochem Biotechnol

Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India,

Published: February 2014

Excision repair cross complementation group 1 (ERCC1) is an important protein in the nucleotide excision repair (NER) pathway, which is responsible for removing DNA adducts induced by platinum based compounds. The heterodimer ERCC1-XPF is one of two endonucleases required for NER. Genetic variations or polymorphisms in ERCC1 gene alter DNA repair capacity. Reduced DNA repair (NER) capacity may result in tumors and enhances cisplatin chemotherapy in cancer patients, which functions by causing DNA damage. Therefore, ERCC1 variants have the potential to be used as a strong candidate biomarker in cancer treatments. In this study we identified five variants V116M, R156Q, A199T, S267P, and R322C of ERCC1 gene as highly deleterious. Further structural and functional analysis has been conducted for ERCC1 protein in the presence of three variants V116M, R156Q, and A199T. Occurrence of theses variations adversely affected the regular interaction between ERCC1 and XPF protein. Analysis of 20 ns molecular dynamics simulation trajectories reveals that the predicted deleterious variants altered the ERCC1-XPF complex stability, flexibility, and surface area. Notably, the number of hydrogen bonds in ERCC1-XPF mutant complexes decreased in the molecular dynamic simulation periods. Overall, this study explores the link between the ERCC1 deleterious variants and cisplatin chemotherapy for various cancers with the help of molecular docking and molecular dynamic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-013-0592-5DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
docking molecular
8
molecular dynamics
8
ercc1
8
ercc1 deleterious
8
excision repair
8
ercc1 protein
8
repair ner
8
ercc1 gene
8
dna repair
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!