Background: Angiotensin-converting enzyme (ACE) 2 is a homolog of ACE and is thought to be a potent counter-regulator against ACE activity. However, the role of ACE2 has not been investigated in pediatric patients with IgA nephropathy (IgAN). This study was performed to examine the relationship between ACE2 expression and the development of pediatric IgAN.

Methods: We performed immunohistochemical analysis of ACE2 and ACE in 39 patients with pediatric IgAN and 14 patients with minor glomerular abnormalities, and elucidated the effects of various cytokines on ACE2 expression in cultured human mesangial cells.

Results: ACE2 expression levels in glomeruli and tubules were positively correlated with the mesangial hypercellularity score, while ACE expression levels in glomeruli and tubules are not. Multiple regression analysis showed that the mesangial hypercellularity score correlated with the ACE2 expression level in glomeruli and the urinary protein-creatinine ratio. In IgAN patients not treated with a renin-angiotensin system blocker, ACE2 expression levels in glomeruli were significantly increased compared to patients with minor glomerular abnormalities. IgAN patients treated with a renin-angiotensin system blocker did not show this increase in ACE2 expression. Furthermore, cultured human MC showed increased ACE2 mRNA and protein after treatment with IL-1β, a pro-inflammatory cytokine in IgAN. In fact, glomerular expressions of IL-1β were remarkably increased in patients with IgAN.

Conclusion: These data indicate that ACE2 expression in glomeruli is associated with mesangial hypercellularity in early lesions of pediatric IgAN.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000355618DOI Listing

Publication Analysis

Top Keywords

ace2 expression
28
igan patients
12
expression levels
12
levels glomeruli
12
mesangial hypercellularity
12
ace2
10
angiotensin-converting enzyme
8
iga nephropathy
8
expression
8
pediatric igan
8

Similar Publications

Mathematical modeling of impacts of patient differences on renin-angiotensin system and applications to COVID-19 lung fibrosis outcomes.

Comput Biol Med

January 2025

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY, 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14215, USA. Electronic address:

Patient-specific premorbidity, age, and sex are significant heterogeneous factors that influence the severe manifestation of lung diseases, including COVID-19 fibrosis. The renin-angiotensin system (RAS) plays a prominent role in regulating the effects of these factors. Recent evidence shows patient-specific alterations of RAS peptide homeostasis concentrations with premorbidity and the expression level of angiotensin-converting enzyme 2 (ACE2) during COVID-19.

View Article and Find Full Text PDF
Article Synopsis
  • ACE2 and TMPRSS2 are key genes that influence how SARS-CoV-2 enters cells, and their variations may impact COVID-19 severity and mortality.
  • A study of 178 hospitalized COVID-19 patients in Serbia collected genetic data and found specific polymorphisms (rs2070788 and rs2106809) linked to reduced severity and death risk in females.
  • The study concludes that these genetic variations could serve as important predictors for how severe COVID-19 can become in women.
View Article and Find Full Text PDF

ATM/ATR-Mediated DNA Damage Response Facilitates SARS-CoV-2 Spike Protein-Induced Syncytium Formation.

J Med Virol

January 2025

Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.

Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2.

View Article and Find Full Text PDF

Mice are one of the most common biological models for laboratory use. However, wild-type mice are not susceptible to COVID-19 infection due to the low affinity of mouse ACE2, the entry protein for SARS-CoV-2. Although mice with human ACE2 (hACE2) driven by Ace2 promoter reflect its tissue specificity, these animals exhibit low ACE2 expression, potentially limiting their fidelity in mimicking COVID-19 manifestations and their utility in viral studies.

View Article and Find Full Text PDF

Objectives: CD209L and its homologous protein CD209 act as alternative entry receptors for the SARS-CoV-2 virus and are highly expressed in the virally targeted tissues. We tested for the presence and clinical features of autoantibodies targeting these receptors and compared these with autoantibodies known to be associated with COVID-19.

Methods: Using banked samples ( = 118) from Johns Hopkins patients hospitalised with COVID-19, we defined autoantibodies against CD209 and CD209L by enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!