Pharmacokinetic evaluation of C-3 modified 1,8-naphthyridine-3-carboxamide derivatives with potent anticancer activity: lead finding.

J Enzyme Inhib Med Chem

Department of Drug Metabolism and Pharmacokinetics (DMPK), Dabur Research Foundation, Ghaziabad , Uttar Pradesh , India and.

Published: October 2014

To develop naphthyridine derivatives as anticancer candidates, pharmacokinetic (PK) evaluations of 10 novel derivatives of 1,4-dihydro-4-oxo-1-proparagyl-1,8-naphthyridine-3-carboxamide, with potent anticancer activity were done using in vitro ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic--pharmcodynamic (PK/PD) assays. Only derivatives 5, 6, 9 and 10 showed better metabolic stability, solubility, permeability, partition coefficient and cytochrome P450 (CYP) inhibition values. PK of derivatives 5, 6, 9 and 10 in rat showed comparable PK profile for derivative 5 (C0 = 6.98 µg/mL) and 6 (C0 = 6.61 µg/mL) with no detectable plasma levels for derivatives 9 and 10 at 5.0 mg/kg i.v. dose. PK/PD assay of derivatives 5 and 6 in tumor-bearing mice (TBM) showed comparable PK but tumor plasma index (TPI) of derivative 6 (4.02) was better than derivative 5 (2.50), suggesting better tumor uptake of derivative 6. Derivative 6, as lead compound, showed highest tumor growth inhibition (TGI) value of 33.6% in human ovary cancer xenograft model.

Download full-text PDF

Source
http://dx.doi.org/10.3109/14756366.2013.845817DOI Listing

Publication Analysis

Top Keywords

potent anticancer
8
anticancer activity
8
derivatives
7
derivative
5
pharmacokinetic evaluation
4
evaluation c-3
4
c-3 modified
4
modified 18-naphthyridine-3-carboxamide
4
18-naphthyridine-3-carboxamide derivatives
4
derivatives potent
4

Similar Publications

Discovery of a novel exceptionally potent and orally active Nur77 ligand NB1 with a distinct binding mode for cancer therapy.

Acta Pharm Sin B

December 2024

State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China.

The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands.

View Article and Find Full Text PDF

Development of a bacteria-nanosapper for the active delivery of ZIF-8 particles containing therapeutic genes for cancer immune therapy.

Acta Pharm Sin B

December 2024

School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.

Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.

View Article and Find Full Text PDF

Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.

View Article and Find Full Text PDF

The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three Ru complexes - of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of through a single-crystal X-ray diffraction study. The solution stability of - was tested using conventional techniques such as UV-vis and HRMS.

View Article and Find Full Text PDF

Cancer remains a global health threat, with traditional treatments limited by adverse effects and drug resistance. Nanozyme-based catalytic therapy with high stability and controllable activity provides targeted and specific in situ tumor treatment to address these challenges. More intriguingly, the tremendous advances in nanotechnology have enabled nanozymes to rival the catalytic activity of natural enzymes, presenting an exciting opportunity for innovating antitumor nanodrugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!