Six-helix bundle and triangle DNA origami insulator-based dielectrophoresis.

Anal Chem

Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, U.S.A.

Published: December 2013

Self-assembled DNA nanostructures have large potential for nanoelectronic circuitry, targeted drug delivery, and intelligent sensing. Their applications require suitable methods for manipulation and nanoscale assembly as well as adequate concentration, purification, and separation methods. Insulator-based dielectrophoresis (iDEP) provides an efficient and matrix-free approach for manipulation of micro- and nanometer-sized objects. In order to exploit iDEP for DNA nanoassemblies, a detailed understanding of the underlying polarization and dielectrophoretic migration is essential. Here, we explore the dielectrophoretic behavior of six-helix bundle and triangle DNA origamis with identical sequence but large topological difference and reveal a characteristic frequency range of iDEP trapping. Moreover, the confinement of triangle origami in the iDEP trap required larger applied electric fields. To elucidate the observed DEP migration and trapping, we discuss polarizability models for the two species according to their structural difference complemented by numerical simulations, revealing a contribution of the electrophoretic transport of the DNA origami species in the iDEP trapping regions. The numerical model showed reasonable agreement with experiments at lower frequency. However, the extension of the iDEP trapping regions observed experimentally deviated considerably at higher frequencies. Our study demonstrates for the first time that DNA origami species can be successfully trapped and manipulated by iDEP and reveals distinctive iDEP behavior of the two DNA origamis. The experimentally observed trapping regimes will facilitate future exploration of DNA origami manipulation and assembly at the nano- and microscale as well as other applications of these nanoassemblies with iDEP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac402493uDOI Listing

Publication Analysis

Top Keywords

dna origami
16
idep trapping
12
idep
9
six-helix bundle
8
bundle triangle
8
dna
8
triangle dna
8
insulator-based dielectrophoresis
8
dna origamis
8
origami species
8

Similar Publications

Models and simulations of structural DNA nanotechnology reveal fundamental principles of self-assembly.

Chem Soc Rev

January 2025

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

DNA is not only a centrally important molecule in biology: the specificity of bonding that allows it to be the primary information storage medium for life has also allowed it to become one of the most promising materials for designing intricate, self-assembling structures at the nanoscale. While the applications of these structures are both broad and highly promising, the self-assembly process itself has attracted interest not only for the practical applications of designing structures with more efficient assembly pathways, but also due to a desire to understand the principles underlying self-assembling systems more generally, of which DNA-based systems provide intriguing and unique examples. Here, we review the fundamental physical principles that underpin the self-assembly process in the field of DNA nanotechnology, with a specific focus on simulation and modelling and what we can learn from them.

View Article and Find Full Text PDF

Folding and Functionalizing DNA Origami: A Versatile Approach Using a Reactive Polyamine.

J Am Chem Soc

January 2025

Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain.

DNA nanotechnology is a powerful synthetic approach to crafting diverse nanostructures through self-assembly. Chemical decoration of such nanostructures is often required to tailor their properties for specific applications. In this Letter, we introduce a pioneering method to direct the assembly and enable the functionalization of DNA nanostructures using an azide-bearing functional polyamine.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Molecular Origami: Designing Functional Molecules of the Future.

Molecules

January 2025

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Osaka, Japan.

In the field of chemical biology, DNA origami has been actively researched. This technique, which involves folding DNA strands like origami to assemble them into desired shapes, has made it possible to create complex nanometer-sized structures, marking a major breakthrough in nanotechnology. On the other hand, controlling the folding mechanisms and folded structures of proteins or shorter peptides has been challenging.

View Article and Find Full Text PDF

DNA Origami Framework-Based Spatial Nanochip for Circular ssDNA Assembly and Data Storage.

Small

January 2025

Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

A 3D DNA spatial chip (DSC) based on an icosahedral DNA origami framework is introduced to construct customized circular single-stranded DNA (c-ssDNA) for data storage. Within the confined space of the DSC, thirty addressable location sequences extending from the framework edges are available for designing circular paths and directing the assembly of a series of information oligonucleotides for efficient ligation. This strategy is verified by constructing c-ssDNAs from up to 15 fragments to encode two poems (800 and 860 nucleotides).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!