Background: Hearing loss is the most common sensory deficit in humans, affecting approximately 10% of the global population. In developed countries, one in every 500 individuals suffers from severe to profound bilateral sensorineural hearing loss. For those up to 5 years old, the proportion is higher, at 2.7 in 1000 individuals, and for adolescents the average is 3.5 in 1000. Among the causes of hearing loss, more than 50% are related to genetic factors. To date, nearly 150 loci and 64 genes have been associated with hearing loss. Mutations in the GJB2 gene, which encodes connexin 26, constitute the main genetic cause. So far, more than 300 variations have been described in this gene.As a response to the clinical and genetic heterogeneity of hearing loss and the importance of correct molecular diagnosis of individuals with hereditary hearing loss, this study worked in the optimization for a diagnostic protocol employing a high-throughput genotyping technology.

Methods: For this work, was used the TaqMan® OpenArray™ Genotyping platform. This is a high performance, high-throughput technology based on real-time PCR, which enables the evaluation of up to 3072 SNPs (Single Nucleotide Polymorphisms), point mutations, small deletions, and insertions, using a single genotyping plate. For the study, were selected the layout allowing to analyze 32 alterations in 96 individuals simultaneously. In the end, the generated results were validated by conventional techniques, as direct sequencing, Multiplex PCR and RFLP-PCR.

Results: A total of 376 individuals were analyzed, of which 94 were healthy controls, totaling 4 plates in duplicate. All 31 of the changes analyzed were present in the nuclear genes GJB2, GJB6, CRYL1, TMC1, SLC26A4, miR-96, and OTOF, and in the mitochondrial genes MT-RNR1 and MT-TS1. The reactions were subsequently validated by established techniques (direct sequencing, multiplex PCR, and RFLP-PCR) that had previously been used to perform molecular screening of hearing loss at the Human Genetics Laboratory of the Center for Molecular Biology and Genetic Engineering (CBMEG), at the State University of Campinas (UNICAMP). In total, 11,656 genotyping reactions were performed. Of these, only 351 reactions failed, representing approximately 3.01% of the total. The average accuracy of genotyping using the OpenArray™ plates was 96.99%.

Conclusions: The results demonstrated the accuracy, low cost, and good reproducibility of the technique, indicating that the TaqMan® OpenArray™ Genotyping Platform is a useful and reliable tool for application in molecular diagnostic testing of hearing loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015212PMC
http://dx.doi.org/10.1186/1471-2350-14-112DOI Listing

Publication Analysis

Top Keywords

hearing loss
32
taqman® openarray™
12
openarray™ genotyping
12
genotyping platform
12
hearing
8
loss
8
techniques direct
8
direct sequencing
8
sequencing multiplex
8
multiplex pcr
8

Similar Publications

Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks.

View Article and Find Full Text PDF

Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs).

View Article and Find Full Text PDF

Revisiting Age-Related Normative Hearing Levels in Korea.

J Korean Med Sci

January 2025

Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Korea.

Background: Hearing level reference values based on the results of recent audiometry have not been established for the general population of South Korea. This study aimed to evaluate the mean hearing levels of each age group and to measure the annual progression of hearing loss.

Methods: We used the database of the eighth and ninth Korea National Health and Nutrition Examination Survey from 2020 to 2022, and included participants with normal tympanic membranes and without occupational noise exposure.

View Article and Find Full Text PDF

Work-related temporary hearing loss and associated factors among textile industry workers in Amhara region, Ethiopia: a cross-sectional study.

BMJ Open

December 2024

Department of Environmental and Occupational Health and Safety, College of Medicine and Health Science, Institute of Public Health, University of Gondar, Gondar, Ethiopia.

Objectives: This study was designed to assess occupational noise exposure levels, prevalence of temporary hearing loss and associated factors among textile industry workers in Amhara region, Ethiopia.

Design: An institution-based, cross-sectional study was conducted between June and July 2022. Participants were selected via a simple random sampling technique.

View Article and Find Full Text PDF

Introduction: Individuals with hearing loss and hearing aid users report higher levels of listening effort and fatigue in daily life compared with those with normal hearing. However, there is a lack of objective measures to evaluate these experiences in real-world settings. Recent studies have found that higher sound pressure levels (SPL) and lower signal-to-noise ratios (SNR) are linked to increased heart rate and decreased heart rate variability, reflecting the greater effort required to process auditory information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!