Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) negatively regulates the phosphoinositide-3-kinase (PI3K) signaling pathway. In colorectal cancer (CRC), observed frequencies of loss of PTEN expression, concordant expression in primary tumors and metastases, and the association of PTEN status with outcome vary markedly by detection method. We determined the degree to which PTEN expression is consistent in 70 matched human CRC primaries and liver metastases using a validated immunohistochemistry assay. We found loss of PTEN expression in 12.3% of assessable CRC primaries and 10.3% of assessable liver metastases. PTEN expression (positive or negative) was concordant in 98% of matched colorectal primaries and liver metastases. Next we related PTEN status to mutations in RAS and PI3K pathway genes (KRAS, NRAS, BRAF , and PIK3CA) and to overall survival (OS). PTEN expression was not significantly associated with the presence or absence of mutations in RAS or PI3K pathway genes. The median OS of patients whose tumors did not express PTEN was 9 months, compared to 49 months for patients whose tumors did express PTEN (HR = 6.25, 95% confidence intervals (CI) (1.98, 15.42), P = 0.0017). The association of absent PTEN expression with increased risk of death remained significant in multivariate analysis (HR = 6.31, 95% CI (2.03, 17.93), P = 0.0023). In summary, PTEN expression was consistent in matched CRC primaries and in liver metastases. Therefore, future investigations of PTEN in metastatic CRC can use primary tumor tissue. In patients with liver-only metastases, loss of PTEN expression predicted poor OS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799284PMC
http://dx.doi.org/10.1002/cam4.97DOI Listing

Publication Analysis

Top Keywords

pten expression
36
liver metastases
16
pten
15
expression consistent
12
loss pten
12
crc primaries
12
primaries liver
12
expression
9
colorectal cancer
8
pten status
8

Similar Publications

Background: The molecular of intervertebral disc degeneration (IVDD) is still unclear. When it comes to treating decoction, traditional Chinese medicine is effective. In particular, the Duhuo (Radix Angelicae Biseratae) may be particularly helpful.

View Article and Find Full Text PDF

Feedback loop centered on MAF1 reduces blood-brain barrier damage in sepsis-associated encephalopathy.

Cell Mol Biol Lett

January 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Background: A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.

Subjects And Methods: In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats.

View Article and Find Full Text PDF

Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.

View Article and Find Full Text PDF

Background: It is largely unidentified concerning the underlying genetic causes responsible for triple-negative breast cancers (TNBC), with unpredictable disease recurrence. This study aimed to examine the role of ZNF703 (Zinc finger 703) in the malignant behaviors of TNBC and its role in predicting disease-free survival (DFS).

Methods: After downregulation of ZNF703 with short interfering RNA (siRNA), we examined the proliferation of TNBC cell line MDA-MB-231 by sulforhodamine B (SRB) assay, the invasion of cells by a transwell invasion model, and the migration of cells by the monolayer wound-healing experiment.

View Article and Find Full Text PDF

Apigenin enhancing oxidative resistance and proteostasis to extend lifespan via PTEN-mediated AKT signalling pathway.

Biochim Biophys Acta Mol Basis Dis

January 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China. Electronic address:

Aging is a complicated process, featuring the progressive deterioration of physiological functions and a heightened susceptibility to diseases including neurodegenerative disorders, cardiovascular diseases, and cancer. Apigenin, a flavonoid existing in various plants, has attracted attention due to its potential role in anti-aging. In this investigation, the potential effect of apigenin on extending lifespan in Saccharomyces cerevisiae (yeast) and Drosophila melanogaster (flies) was explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!