The peripheral Foxp3(+) Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4(+) T cells can be readily converted to Foxp3(+) iTreg in vitro, and memory CD4(+) T cells are resistant to conversion. In this study, we investigated the induction of Foxp3(+) T cells from various CD4(+) T-cell subsets in human peripheral blood. Though naive CD4(+) T cells were readily converted to Foxp3(+) T cells with TGF-β and IL-2 treatment in vitro, such Foxp3(+) T cells did not express the memory marker CD45RO as do Foxp3(+) T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4(+) T cells, defined as CD62L(+) central memory T cells, could be induced by TGF-β to differentiate into Foxp3(+) T cells. It is well known that Foxp3(+) T cells derived from human CD4(+)CD25(-) T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4(+)CD62L(+) central memory T cell-derived Foxp3(+) T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4(+) T cell-derived Foxp3(+) T cells. But further research showed that mouse CD4(+) central memory T cells also could be induced to differentiate into Foxp3(+) T cells, such Foxp3(+) T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4(+)CD62L(+) central memory T cells as a novel potential source of iTreg.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796486 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077322 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!